Roadside air pollution and secondary organic aerosol seasonal trends from an oxidation flow reactor in Seoul

Gyutae Park a, Seokwon Kang b, Min-Suk Bae c, Yunsung Lim d, Chan-Soo Jeon e, Taehyoung Lee b, *

a Air Pollution Engineering Division, Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
b Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, 17055, Republic of Korea
c Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
d Transportation Pollution Research Center, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
e Korea Institute of Civil Engineering and Building Technology, Goyang, 10223, Republic of Korea

HIGHLIGHTS

• The seasonal study in South Korea about air pollution and secondary aerosol using an oxidation flow reactor.
• The characteristics of pollutants are different according to the composition of traffic volume by fuel types.
• Spring, Summer, and Fall exhibited more SOA products than winter under various OH \(\cdot \) concentration.
• The IVOCs were the key group of the SOA compared to that formed from anthropogenic VOCs, SVOCs, and BVOCs.

ARTICLE INFO

Keywords:
Oxidation flow reactor (OFR)
Secondary organic aerosol (SOA)
Korean holidays
Roadside air pollutants
Seoul

ABSTRACT

The aim of this study was to determine the seasonal trends in secondary aerosols (SAs) and urban pollutants formed in an oxidation flow reactor (OFR) at a key roadside location in Seoul, South Korea. Spring 2019 saw high primary concentrations overall, and all seasons saw high levels of \(\text{NO}_x \), \(\text{SO}_2 \), and equivalent black carbon (eBC) trends in the early morning (6:00–7:00). This exhibited similarities to the trend in diesel vehicle traffic volume. During the campaign, the modified hydroxyl radical (OH) exposure in the OFR was \(1.1 \times 10^{12} \) molecules cm\(^{-3}\) s (\(~8.5 \) days), and the potential organic aerosol enhancement (OA\(_{\text{PE}}\)) was \(0.4\text{–}57.7 \mu g m^{-3} \) (winter \(0.4\text{–}1.6 \), spring \(28.4\text{–}52.3 \), summer \(40.5\text{–}57.7 \), fall \(18.1\text{–}31.1 \)). The highest OA\(_{\text{PE}}/\Delta \text{CO} \) value was \(89.5\text{–}414.7 \mu g m^{-3} \) for \(0.1\text{–}4 \) OH-day in summer, and the lowest level was \(1.1\text{–}8 \mu g m^{-3} \) for \(0.5\text{–}8.5 \) in OH-day winter (including holidays). OA\(_{\text{PE}}\) in seasons without winter under \(\sim 4.5 \) OH-day had a \(\sim 5.5 \) times higher value compared to that of organic on the roadside, accounting for 50.9–70.2% of the total sum (organic + eBC + OA\(_{\text{PE}}\)). This had a high contribution to secondary organic aerosol (SOA) formation and, for winter, a value of only \(\sim 5.5\% \). The predicted SOA formation from intermediate volatile organic compounds (IVOCs) calculated based on literature was 11–47% during mornings (9:30–11:30), excluding the winter season. This value was higher than the SOA formation from anthropogenic VOCs (benzene, toluene, ethylbenzene, and \(m,p,o \)-xylene) and biogenic VOCs (isoprene, monoterpenes, and sesquiterpenes), indicating the need for additional research into the domestic status of IVOCs. The marked seasonal change in South Korea’s climate made applying research findings from other countries difficult. Therefore, further studies must be conducted based on realistic applicability, considering various environmental conditions, chemical speciation, and the classification of emission inventory components.

* Corresponding author.
E-mail address: thlee@hufs.ac.kr (T. Lee).

https://doi.org/10.1016/j.atmosenv.2023.120051
Received 4 February 2023; Received in revised form 21 August 2023; Accepted 22 August 2023
Available online 23 August 2023
1352-2310/© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Internal combustion engine (ICE) vehicles powered by fossil fuels have become a popular mode of transportation, providing the general public with more convenience. However, air pollutants emitted by these vehicles are the primary source of urban air pollution and potential global warming, posing a socioeconomic challenge for modern society (Liu et al., 2020; Zhou et al., 2020). As the use of motor vehicles is closely associated with public life, short- and long-term exposure to pollutants from motor vehicle emissions harms human health in a variety of ways, including cardiovascular disease, pulmonary function decline, cancer, and mortality (Brugge et al., 2007; Sydbom et al., 2001; Wichmann, 2007).

Primary pollutants emitted by motor vehicles include carbon monoxide (CO), non-methane organic gas (NMOG), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM) (Pieber et al., 2018; Roth et al., 2020). However, a few substances produce secondary aerosols (SAs), secondary air pollutants, through a radical chemical reaction with other atmospheric components (Karjalainen et al., 2019; Simonet et al., 2019).

Metropolitan cities in South Korea have a high population density and, consequently, a concentrated motor vehicle distribution. According to Ministry of Land, Infrastructure, and Transport (MOLIT) statistics, the registered motor vehicles in the Seoul Metropolitan Area (Seoul, Gyeonggi, and Incheon) account for 47% (787,178 vehicles) of the total number of registered motor vehicles nationwide (1,657,691 vehicles). As a result, Seoul, a metropolitan city, has high levels of air pollution caused by motor vehicle emissions, with CO emissions from on-road vehicles accounting for 64% (36,116 tons), NOx for 49% (37,515 tons), PM2.5 for 30% (503 tons), and NMOG for 11% (7492 tons) of total emissions (Ministry of Environment (MOE), 2017 National Air Pollutants Emission Report).

NMOG emission concentrations from motor vehicle exhaust are reduced after treatment with devices such as three-way catalysts (TWC) and diesel oxidation catalysts (DOC). However, with secondary air pollutant formation, NMOG has been frequently reported as the primary source of SOA formation in urban areas (Park et al., 2019; Shah et al., 2020; Saha et al., 2018a; Link et al., 2017). Moreover, recently, gasoline vehicles equipped with TWC generated NH3 emissions as a by-product in the process of reducing pollutants, which led to atmospheric reactions with NOx, thus contributing to the formation of ammonium nitrate (NH4NO3), a type of secondary inorganic aerosol (SIA) (Park et al., 2021a; Link et al., 2017; Suarez-bertoa et al., 2014).

Hence, to assess air pollution caused by motor vehicle emissions, it is necessary to investigate the primary emissions and secondary pollutant formation. Tkacik et al. (2014) used an oxidation flow reactor (OFR) in a tunnel located in a metropolitan area in the United States to study the formation of SA. As a result, SOA production was reported to be up to six times greater than the total aerosol emissions from on-road mobile sources in the United States. This indicates that motor vehicle emissions significantly contribute to the formation of SA in densely populated urban areas. Saha et al. (2018a) conducted research using an OFR in the summer and winter seasons near highways in North Carolina, reporting that seasonal temperature changes affected the volatility distribution and reaction activity of NMOGs. SOA formation increased during the summer, when temperatures were generally higher than in the winter. Through their research on SOA formation from Beijing and Hong Kong road sides, Liao et al. (2021) and Liu et al. (2019) reported the importance of measuring precursor gases in motor vehicles, such as intermediate volatile organic compounds (IVOCs). The secondary particulate matter production factor was ~2.6 times higher than primary particle production (equivalent black carbon (eBC) + hydrocarbon-like organic aerosol (HOA)).

As described above, previous studies on SA formation have advantages in terms of a comprehensive and realistic evaluation of air pollution from motor vehicle emissions in the atmosphere. However, SA research based on real-time measurements has not yet been conducted in South Korea. Therefore, this study comprehensively evaluated air pollutants from roadside motor vehicle emissions and SA formation in an OFR in South Korea. In this study, seasonal trends (spring, summer, fall, and winter) were measured from a roadside area that represents the traffic volume according to the vehicle fuel type distribution in Seoul. Furthermore, considering the traditional representative holidays in South Korea, Korean New Year (KNY) and Korean Thanksgiving Day (KTD) on the lunar calendar, the days of measurements were classified into normal days and holidays (KNY, KTD) to investigate the changes in traffic by fuel type. Thus, a comparative analysis of various types of pollutants and characteristics of SA formation was performed. This study’s findings contribute substantially by presenting an analysis of the formation of secondary pollutants and the investigation of primary air pollutants from motor vehicle emissions, which has been the primary focus of previous studies, thus facilitating a comprehensive evaluation and understanding of the status of air pollution from motor vehicle emissions.

2. Methodology

2.1. Location

In this study, a simplified measurement station was installed below the management office outside the Hongjimum Tunnel in Seoul in 2019. Measurements were taken for up to 13 days in the winter (January), spring (April), summer (July), and fall (September) (more information can be obtained in Supporting information SI, Table S1). This area has an average round-trip traffic volume of 160,768 vehicles day−1, according to the average traffic volume statistics in downtown Seoul in 2016. Measurements were conducted in the Kookmin university-direction lane, in which the average traffic volume is approximately 75,000 vehicles day−1 on weekends and approximately 80,000 vehicles day−1 on weekdays. Additionally, it is advantageous for the intensive measurement of air pollutants from motor vehicle emissions because the area’s curved terrain is less affected by pollutant inflow from outside sources. During the study period, the temperature was −3.9 ± 4.9 °C in the winter, 14.1 ± 4.7 °C in the spring, 24.8 ± 3.3 °C in the summer, and 23 ± 3.3 °C in the fall. The relative humidity was 47.3 ± 17.5% in the winter, 67.5 ± 21.6% in the spring, 67.7 ± 15.7% in the summer, and 64.3 ± 20.2% in the fall. As for the traditional representative holiday periods in South Korea, KNY was set from 00:00 on February 2nd to 00:00 on February 7th. KTD was set from 00:00 on September 12th to 00:00 on September 15th (SI, Table S1). In this study, the winter and spring measurements were conducted concurrently with another project in the same location; therefore, some of the traffic environment data (traffic volume by fuel type) included in the results were obtained by Park et al. (2021b); otherwise, the other data was not duplicated in any way.

2.2. Instrument setup

During the setup, roadside pollutants were introduced into the simplified measurement station using a blower from a duct at 4 m from the lane and 1.5 m from the ground to perform isokinetic sampling. Gas-phase components including CO (Serinus 30, Ecotech), NOx (NO, NO2) (42C, Thermo Scientific), SO2 (43C, Thermo Scientific), O3 (49C, Thermo Scientific), and CO2 (LI-840, LI-COR) were measured. The NH3 (EAA-911, Los Gatos Research) sampling line was heated in the summer and fall due to the air conditioner operation to maintain the internal temperature (Kim et al., 2021). For the particle phase, eBC was measured using an aethalometer (AE33, Magee Scientific). A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, hereafter referred to as AMS, Aerodyne Research, Inc.) was used to determine the concentration of organic, nitrate, sulfate, ammonium, and chloride among PM1 (Kang et al., 2020; Drennick et al., 2005; DeCarlo 2003).
et al., 2006). The measurement using AMS was performed in V-mode at 1-min intervals, and data processing was performed in Igor Pro (version 8.04) using toolskits SQUIRREL (version 1.65) and PIKA (version 1.25), respectively. In this study, constant values of the relative ionization efficiency (RIE) were used with organic at 1.4, nitrate at 1.1, sulfate at 1.2, ammonium at 4, and chloride at 1.4 (Jimenez et al., 2003). For the collection efficiency (CE), through a comparison with the scanning mobility particle sizer (SMPS, model 3090, TSI), the default value of 1

mobility particle sizer (SMPS, model 3090, TSI), the default value of 1

ammonium at 4, and chloride at 1.4 (Jimenez et al., 2003). For the

efficiency (RIE) were used with organic at 1.4, nitrate at 1.1, sulfate at 1.2,

yields despite their trace amounts among motor vehicle emissions

(Jathar et al., 2011, 2013; Ma et al., 2018; Robinson et al., 2007; Zhao et al. 2017, 2018). Therefore, SOA production and contribution were estimated using the reported results for SVOCs and IVOCs in motor vehicles. In addition, the benzene, toluene, ethylbenzene, m + p-xylene, and o-xylene results (the representative components of anthropogenic VOCs [AVOC]) were used to calculate anthropogenic SOA (ASOA) (SI Section S1, Fig. S4, and Table S2). In addition, the isoprene, monoterpenes (α-, β-pinene), and sesquiterpene (longifolene) results (the components of biogenic VOCs [BVOCs] measured using proton transfer reaction mass spectrometry [PTR-MS, Ionicon] during fall) were used to calculate seasonal biogenic SOA (BSOA) and the concentrations for the other seasons by applying equations S1–S3 described in SI section S1.

Equation (1) shows the calculation formula used in this study, as follows:

\[
SOA_{\text{prediction}} = \left[V_{\text{OCs,SVOCs}}(\text{amu, %}) / (\text{IWO}) \right] \times \left(1 - e^{-k_{\text{OH}} \times \Delta t} \right) \times Y_i
\]

(1)

\(\text{VOCs} \) denotes AVOC, BVOC, and S/IVOCS (in the unit of \(\mu \text{g m}^{-3} \)), \(\text{SOA} \) indicates OH reaction rate constant (25°C, molecules cm^{-3}), and \(\text{OH} \times \Delta t \) is the OH exposure inside OFR. \(Y_i \) is the SOA yield of each component. In this study, values under high NOx conditions were used (SI section, SI Table S4). The SOA (\(\mu \text{g m}^{-3} \)) of IVOCs for gasoline and diesel vehicles was calculated using the IVOCs-to-HOA (SI section Table S3) approach reported by Shah et al. (2020). However, in this study an 8.5 ± 3.9 value was used for gasoline vehicles, which is the result under the hot start condition reported by Zhao et al. (2016). A 12.5 ± 3.6 value was used for diesel vehicles with installed after-treatment devices, including DPF. For SOA of SVOCs from diesel vehicles, the specific gravity value of volatility distribution among vehicles mounted with after-treatment devices, including DPF, was used, as reported by Zhao et al. (2015). The measured specific gravity value containing SVOCs was applied to the filter results in May et al. (2013) for gasoline vehicles.

3. Results and discussion

3.1. Seasonal roadside air pollutants

Fig. 1 depicts the seasonal distribution of air pollutant concentrations and traffic composition data for the entire measurement period. As shown in Fig. 1h, the seasonal average traffic volume in the winter, spring, summer, and fall was 67,279 (±6,683), 72,966 (±1,975), 70,028 (±3,232), and 66,949 (±5,554) vehicles day^{-1}, respectively, indicating no significant difference in the seasonal traffic volume distribution. During the seasonal measurements, the traffic volume and percentage for each fuel type were 31,950–36,901 vehicles day^{-1} for gasoline vehicles (accounting for 43–54%), 25,868–33,212 vehicles day^{-1} for diesel vehicles (accounting for 36–46%), and 4510–5102 vehicles day^{-1} for LPG vehicles (accounting for 9–11%) (SI Table S1). This finding is consistent with the vehicle occupancy ratios of the major fuel types reported in South Korea and Seoul in 2019 (Park et al., 2021a; SI Table S5). Therefore, the findings of this study represent the characteristics of motor vehicle pollutant emissions from various fuel types in the city center area. The average speed during the period for each season was 69.2 (±11.9) km h^{-1} for winter, 69.3 (±1.4) km h^{-1} for spring, 64.8 (±6.9) km h^{-1} for summer, and 63.9 (±7.2) km h^{-1} for fall, respectively. The results for average CO, CO2, NOx, SO2, and eBC concentrations were highest in the spring, followed by winter, summer, and fall (SI Table S6). However, for the air pollutant monitoring stations in the city center adjacent area, most of the components apart from O3 were high in the winter, which could be attributed to the burning of various combustion sources due to the cold weather and the impact of low atmospheric mixing layer height (MLH) (SI Table S6). Therefore, the measurement point in this study, where combustion in the ICE of motor vehicles is a dominant activity, may differ to a certain extent from that of an adjacent monitoring station that includes the result values of different emission sources. The seasonal average CO (Fig. 1a) was 1.49 (±0.36) ppm in the winter, 1.83 (±0.63) ppm in the spring, 1.26 (±0.6)
pm in the summer, and 1.11 (±0.38) ppm in the fall. The concentration of CO (Fig. 1b), a greenhouse gas, was the highest in the spring at 630 (±143) ppm, followed by 605 (±143) ppm in the summer, 589 (±112) ppm in the winter, and 569 (±113) ppm in the fall. Turner et al. (2020) reported that urban anthropogenic CO emissions decreased by 30% after COVID-19 compared to the values before the pandemic, with a 48% decrease in traffic accounting for the main cause. Therefore, with a concentrated distribution of mobile sources, motor vehicle emissions are the major source of anthropogenic CO emissions in the city center. The SO2 concentration (Fig. 1e) was 7.39 (±5.66) ppb in the winter, 9.66 (±5.71) ppb in the spring, 6.61 (±1.64) ppb in the summer, and 1.41 (±1.04) ppb in the fall, indicating that the value in the spring was the highest. The NOx concentration was 686 (±442) ppb in the winter, 798 (±499) ppb in the spring, 407 (±325) ppb in the summer, and 308 (±267) ppb in the fall; thus, the values in the spring and winter were higher by 2.6 times than the values in the summer and fall. Grange et al. (2019) recently reported that NOx emissions tend to increase with lower atmospheric temperatures (24.8–0.5 °C) and older diesel vehicles due to factors such as combustion activities and after-treatment device performance. In this study, the winter and spring with low temperatures showed a higher level of NOx emissions than the summer and fall. As the main mobile source of NOx emissions is diesel vehicles, it is critical to understand the effect of temperature changes on NOx emissions in South Korea.

During the entire study period, O3 was 3.45–9.63 ppb, nine times lower by season than the 16.8–35.2 ppb level at the monitoring station (SI Table S6). This significant difference is because O3 was used in the NO oxidation process from motor vehicles to NO2. Considering that NO/NOx in Fig. 1d is 0.7–0.8, NO is still present in a significant portion of the roadside. Therefore, roadside-concentrated areas will likely increase NO2 through atmospheric diffusion and oxidation processes in the surrounding atmosphere. Organic accounted for 25–42% during the seasonal measurement period, and eBC accounted for 29–47% of the total particle phase, accounting for most of the composition. The percentage of organic in winter and fall was 37% and 42%, respectively, which are higher than that of eBC at 29% and 39%. During the spring and summer, eBC accounted for 47% and 40%, respectively, showing a higher percentage than organic at 25% and 30%. The nitrate concentration was 1.4–4.7 μg m⁻³ (5–15%), and the sulfate concentration was 2.5–5 μg m⁻³ (9–10%), consistent with the general level reported in the urban city center (Zhou et al., 2019a; Kim et al., 2018; Zhou et al., 2019a, 2020). However, due to the high concentration of eBC, the proportion of total particle phase was low, indicating that the measurement point in this study is directly affected by the primary pollutants. According to Kim et al. (2018), the average aerosol concentration in the city center area of Seoul was 22.1 μg m⁻³ during the Korea-US Air Quality Study (KORUS-AQ) conducted in the spring season from April 14th to May 15th, 2016. The average organic concentration was 9.76 (±5.27) μg m⁻³ (47%), nitrate was 3.78 (±4.2) μg m⁻³ (17%), sulfate was 4.4 (±3.26) μg m⁻³ (20%), and eBC was 1.52 (±0.82) μg m⁻³ (7%). Conversely, during the spring season of this study, the eBC concentration was 18.7 (±12.31) μg m⁻³, accounting for 47%. The concentrations of other components were like the values reported by Kim et al. (2018).

NH3 emissions from motor vehicles are typically a by-product of air pollutant reduction using TWC, which are after-treatment devices for gasoline and LPG vehicles (Park et al., 2019; Suarez-Bertoa et al., 2014; Wang et al., 2019a). Moreover, NH3 emissions from gasoline vehicles are known to have a high correlation with CO. Fig. S5 shows a seasonal comparison of NH3 and CO (Suarez-Bertoa et al., 2014; Walters et al., 2020; Park et al., 2023). The Pearson correlation coefficients (r) for spring, summe, and fall were 0.724, 0.824, and 0.834, respectively, showing a high linear correlation and 0.266 for the winter. In the winter, high-temperature exhaust gases, including NH3, are emitted under low-temperature conditions, and the concentration is low due to condensation and gas-particle partitioning (Chang et al., 2016; Wang et al., 2019b).
3.2. Seasonal diurnal variations, including Korean New Year and thanksgiving holiday

Fig. 2 depicts the diurnal pattern by season and the comparison results between KNY and KTD, the longest holidays in Korea. For changes in concentration by season during routine periods (excluding holidays), CO in Fig. 2a describes the first rising curve regarding the increase in total traffic volume from 04:00 or 05:00 to 21:00 and the second rising curve from 21:00 to 04:00 the following day. The characteristics of the first rising curve are thought to be the effect of the CO inflow to the sampling tube in the low level of the diluted state in the vertical and horizontal directions due to the continuous traffic volume (seasonal 3182 ± 149 vehicles h\(^{-1}\)) and average speed (65.3 ± 2.9 km h\(^{-1}\)) despite the increase in air temperature from sunlight during the daytime and rising mixing layer height (MLH). The second rising curve was the effect of LPG vehicle traffic volume changes and the rising proportion of LPG and gasoline vehicles (~77%), as shown in Fig. S6d. As most of the gas-phase components of motor vehicle pollutants are emitted as CO\(_2\), the hourly pattern of CO\(_2\) in this study showed a seasonal trend like that of traffic volume (Mitchell et al., 2018; Zhang et al., 2018). For NH\(_3\), during the summer, fall, and spring, the concentration increased from 05:00, the time when the traffic volume started to increase. By season, peaks of 99 ppb in the winter, 208 ppb in the spring, 147 ppb in the summer, and 96 ppb in the fall were observed at 17:00. After 17:00 for the spring, summer, and fall, NH\(_3\) decreased until 05:00; however, in the winter, the NH\(_3\) concentration increased from 23:00 and reached its second peak at 02:00. The difference in the maximum and minimum values of each peak was Δ 116 ppb in the spring, Δ 96 ppb in the summer, Δ 62 ppb in the fall, and Δ 47 ppb in the winter. The reason for the considerable difference in NH\(_3\) variation despite similar traffic volume is thought to be associated with the ammonia partitioning under low air temperature and reaction temperature of the TWC, along with the explanation provided in 3.1 (Zhou et al., 2019b; Ziółkowski and Gis, 2021).

In this study, NO\(_x\), SO\(_2\), and eBC exhibited clear similarities to traffic patterns of diesel vehicles during the peaks in the hours of 6:00–7:00, as shown in SI Fig. S6c. During these hours, the diesel vehicles outnumbered gasoline vehicles by 1.8 times, accounting for 49–60% of the total traffic. After this hours, the proportion of diesel vehicles decreased. Concurrently, the concentration of air pollutants decreased. The values began to rise again at 09:00. Park et al. (2019) reported that from investigating the gaseous emissions from motor vehicles by fuel type, among the components of the gaseous emissions from diesel vehicles excluding CO\(_2\), the emissions of NO\(_x\) and SO\(_2\) accounted for ~91.2% and ~0.63%, respectively. However, gasoline and LPG vehicles accounted for ~1.4% of NO\(_x\) and ~0.03% of SO\(_2\) emissions, indicating that these two vehicles have a low level of contribution by vehicle fuel type. In this study, the changes in the proportion of traffic volume for diesel vehicles,
and NO$_x$ concentration, and SO$_2$ showed a similar trend. For O$_3$ (Fig. S6a), due to the high NO concentration, regardless of the season, the concentration of O$_3$ was deficient, with an average of 4.6 (±3.0) ppb when the proportion of diesel vehicles was high in the traffic volume. As shown in Fig. 1d, as the portion of NO is still high, the ambient NO$_2$ concentration is expected to rise due to oxidation. For eBC (Fig. 2f), diesel vehicles are the most significant contributor to the first peak. The distribution of concentration after the first peak with the increase in traffic volume was mainly affected by the combined effect of gasoline and diesel vehicles. This is because diesel vehicle contributions to eBC emissions vary according to vehicle age. Additionally, there are contributions from gasoline vehicles equipped with direct injection (GDI) engines (Fushimi et al., 2016; Saliba et al., 2017). The concentration of emissions is expected to rise due to oxidation. For eBC (Fig. 2f), diesel vehicles are the most significant contributor to the first peak. The distribution of concentration after the first peak with the increase in traffic volume was mainly affected by the combined effect of gasoline and diesel vehicles. This is because diesel vehicle contributions to eBC emissions vary according to vehicle age. Additionally, there are contributions from gasoline vehicles equipped with direct injection (GDI) engines (Fushimi et al., 2016; Saliba et al., 2017). The concentration of emissions is expected to rise due to oxidation. For eBC emissions on roadsides with a high proportion of gasoline vehicles.

For example, Karavalakis et al., 2015 reported that as the aromatic content in gasoline increased, eBC emissions increased 1.54 times the aromatic content of 30% compared to the 15% content. Therefore, the eBC emissions on roadsides with a high proportion of gasoline vehicles should consider the effect of the seasonal fuel composition. The diurnal pattern of organic variation was similar to changes in traffic volume, and nitrate in the fall was the lowest concentration pattern in other seasons. During the summer, the sulfate concentration increased during the day and peaked at 6.8 μg m$^{-3}$ between 13:00 and 14:00. The reason was that the sulfur dioxide photochemical oxidation process and the attribution to aqueous phase reaction in wet aerosols due to the higher temperature and humidity than in other seasons (Hu et al., 2017). The pattern of ammonium was followed by nitrate and sulfate because they primarily exist in the forms of ammonium sulfate (NH$_4$)$_2$SO$_4$ and NH$_4$NO$_3$. In the case of chloride, the variation in concentration over time was insignificant. However, in winter, the chloride was higher than in other seasons due to the high background level of the source of coal combustion surrounding the roadside.

The comparison results for gas- and particle-phase pollutants between the major holiday periods (KNY in the winter and KTD in the fall) and the routine traffic environment are summarized in the dotted line illustrated in Fig. 2 and S6–7. Compared to the normal period, the traffic volume decreased by 15% during KNY and 14% during KTD; however, the percentage of gasoline vehicles increased from 48% to 59% during KNY and from 43% to 50% during KTD. The percentage of diesel vehicles decreased from 42% to 31% during KNY and from 47% to 40% during KTD compared to the normal period. The proportion of trucks in the traffic volume decreased from 0.3 to 0.11 (62%) during KNY and from 0.28 to 0.09 (67%) during KTD (SI Fig. S7b). During the holidays, the trends in gas- and particle-phase pollutants changed according to the representative pollutants, considering the traffic volume for each fuel type. A clear reduction in NO$_x$ and SO$_2$ emissions was observed due to a decrease in diesel trucks. During holiday periods, the NO$_2$ concentration decreased from 845.7 (±510.1) ppb and 395.3 (±304.7) ppb to 501.3 (±239.7) ppb and 190.2 (±134.8) ppb for KNY and KTD, respectively (Fig. 2d, SI Table S7). For SO$_2$ emissions, the concentration decreased from 9.5 (±6.58) ppb and 1.8 (±1.2) ppb to 4.97 (±2.82) ppb and 0.9 (±0.5) ppb for KNY and KTD, respectively (Fig. 2e, SI Table S7). Since the high displacement from trucks causes higher emissions than other vehicles, the percentage of trucks in the traffic volume is a key control category for SO$_2$ and SO$_3$ emissions on urban roadsides. Likewise, the eBC emissions during holiday periods decreased from winter-normal 9.71 (±7.17) μg m$^{-3}$ and fall-normal 12.58 (±9) μg m$^{-3}$ to KNY 8.2 (±5.34) μg m$^{-3}$ and KTD 6.53 (±3.62) μg m$^{-3}$, which corresponds to a reduction of 16% and 48%, respectively. The eBC emissions are affected by the contribution from GDI-mounted gasoline vehicles, as described above; thus, it is difficult to define a single cause for the emissions. However, the percentage of trucks in traffic volume had a considerable impact. For organic and inorganic (nitrate, sulfate, ammonium, and chloride) emissions, the concentration was 2–65% higher during holiday periods (SI Table S7). The aerosol composition was as follows: During the KNY period, eBC was 25% (8.2 μg m$^{-3}$), organic was 36% (11.38 μg m$^{-3}$), nitrate was 16% (5.46 μg m$^{-3}$), sulfate was 12% (3.63 μg m$^{-3}$), ammonium was 9% (2.96 μg m$^{-3}$), and chloride was 2% (0.53 μg m$^{-3}$). During the KTD period, eBC was 30% (6.53 μg m$^{-3}$), organic was 47% (10.81 μg m$^{-3}$), nitrate was 7% (2.25 μg m$^{-3}$), sulfate was 10% (2.57 μg m$^{-3}$), ammonium was 5% (1.41 μg m$^{-3}$), and chloride was 1% (0.08 μg m$^{-3}$). Moreover, the CO and CO$_2$ concentration decreased by 3% (1.51 ppm vs. 1.47 ppm) and 4% (600.2 ppm vs. 575.5 ppm) during KNY compared to the normal period, and by 15% (1.19 ppm vs. 1.01 ppm) and 11% (596.4 ppm vs. 531.5 ppm) during KTD. For NH$_3$ emissions, the concentration was higher during KNY with an average of 91 (±31.3) ppb, a 17.7 ppb increase compared to winter-normal; however, during KTD, with an average of 54.8 (±20) ppb, a 13.2 ppb decrease compared to 68 (±29.9) ppb during fall-normal.

3.3. Seasonal SOA formation

Table S8 outlines the seasonal trend in the potential enhancement (PE) of organic and inorganic aerosol (nitrate, sulfate, ammonium, and chloride) emissions produced inside the OFR. Hereafter, organic PE is referred to as OA$_{PE}$ and inorganic PE as species PE. In this study, PE accounted for aerosol loss corrections and defined them as values obtained by subtracting the roadside concentration from the concentration formed inside the OFR. During the seasonal campaign, the OA$_{PE}$ was 0.4–58 μg m$^{-3}$ on average, at a photochemical OH-center (hereafter referred to as OH-d) of up to ~8.5 d. The sulfatePE value was ~0.6 μg m$^{-3}$ in Fig. S8, similar to the roadside research result obtained by Liao et al. (2021) and tunnel research by Tkacik et al. (2014). This is because of the low seasonal SO$_2$ concentration ranging from 1.4 to 9.7 ppb compared to the high emission levels of NO$_x$ and NH$_3$ from motor vehicles. In Fig. S8, the nitratePE value was 0.4–291 μg m$^{-3}$; this is most likely due to the reaction between NH$_3$ and HNO$_3$ with a seasonal average ranging from 70 to 1574 ppb and NH$_3$ ranging from 35 to 209 ppb. The value of nitratePE inside the OFR is based on the thermodynamic equilibrium with NH$_3$ during the major reactions of NO and NO$_2$, which are NO + O$_3$ → NO$_2$ + O and NO$_2$ + OH → HNO$_3$, respectively.

Fig. 3a shows the seasonal change in OA$_{PE}$ and the major holiday periods according to the OH-d. The seasonal OA$_{PE}$ level was in the order of summer, spring, fall, and winter. The lowest production value was shown during winter-normal at 0.4–1.5 μg m$^{-3}$ with the OH-d ranging from 0.5 to 8.5. This result was like that reported by Saha et al. (2018a). The enhancement value was ~0.5–1 μg m$^{-3}$ for the measurement conducted during the winter season in the near highway. These low levels are due to decreased VOC activity at low temperatures. Furthermore, due to the increase in particle partitioning of S/IVOCs, the organic concentration on the roadside increased, which led to a decrease in the levels of the components related to SOA formation. During the winter season in this study, the OA$_{PE}$ values were similar between KNY and winter-normal, indicating no significant correlation with the traffic volume change of gasoline and diesel vehicles. During the summer, the value of OA$_{PE}$ increased to 57.7 μg m$^{-3}$ during 3–4 OH-d and decreased after reaching the peak. However, for the spring season, the value of OA$_{PE}$ showed a continuous increase from 28.4 to 52.3 μg m$^{-3}$ for 0.4–4 OH-d. The atmosphere during spring was considered to be in a mixed state of rich anthropogenic and biogenic precursors and motor vehicle emissions. During the normal fall period, the OA$_{PE}$ value was 18.1–3.1 μg m$^{-3}$ for 0.2–4.3 OH-d, higher by 5.9–13.8 μg m$^{-3}$ compared to the level during KTD. Platt et al. (2017) and Park et al. (2021a) reported in their chassis dynamometer research that the OA$_{PE}$ value was higher for gasoline vehicles than in diesel vehicles. Due to this research and the increase in gasoline vehicle traffic volume, the result values during KTD are expected to be higher. However, the results of this study showed the opposite trend, indicating that IVOC emissions from diesel vehicles have a more significant contribution to roadside SOA formation than light
VOC emissions from gasoline vehicles (Lu et al., 2020; Zhao et al., 2015). Fig. 59 depicts the evolution of seasonal organics in a Van Krevelen diagram (Heald et al., 2010; Ng et al., 2011). The seasonal results of the roadside and roadside–normal showed that fitting the data yielded a slope of −0.79 to −0.9, close to −1, implying that the formation of carboxylic acid groups in our data is consistent. The SOA in winter fell along lines with a slope of −0.89 for winter-normal, and −0.87 for KNY. These were similar to the slopes of −0.9 for normal and −0.98 for KNY, indicating that the evolution of organic under OH• was followed by the same formation mechanism on the winter roadside conditions. In contrast, the slope of other seasons fell from −0.44 to −0.16, indicating organic evolution chemistry involving an oxidation pathway between alcohol and/or peroxide and carboxylic acid functional groups without fragmentation in the presence of OH•.

To demonstrate the trend in SOA formation according to urban combustion, the relation between the value of OAPE/ΔCO (µg m⁻³ ppm⁻¹) and OH• d has been used in numerous previous studies (DeCarlo et al., 2010; Liu et al., 2019; Tkacik et al., 2014). The seasonal trend is illustrated in Fig. 3b. For ΔCO values, the value obtained by subtracting the background concentration was used, which is the method proposed by Gamage et al. (2020) (SI Fig. S10). During the spring and summer, the OAPE/ΔCO values increased to 157.4 µg m⁻³ ppm⁻¹ and 414.7 µg m⁻³ ppm⁻¹, respectively, to the maximum OH• d. However, after reaching peak values of ~3.1 µg m⁻³ ppm⁻¹ and 5.5 µg m⁻³ ppm⁻¹ for ~4.5 and 5.5 OH• d, respectively, the values decreased during the winter-normal and KNY. Moreover, during the fall-normal and KTD, the values decreased after reaching the maximum values of 151.1 µg m⁻³ ppm⁻¹ and 77.3 µg m⁻³ ppm⁻¹ for ~3.5 and 3.4 OH• d, respectively. When the level of maximum values derived in this study was compared to the seasonal values obtained in overseas research, the winter values were higher by a factor of ~6 compared to ~20 µg m⁻³ ppm⁻¹ (10 m away from the highway and 6 ± 7 °C) as reported by Saha et al. (2018a), and lower by ~12 times compared to ~38 µg m⁻³ ppm⁻¹ (18 ± 3 °C) as reported by Liu et al. (2019). For the spring, the value was higher by 1.7 times compared to ~91 µg m⁻³ ppm⁻¹ (16 °C), as reported in the tunnel research by Tkacik et al. (2014). For the summer, the value was seven times higher compared to ~62 µg m⁻³ ppm⁻¹ (26 ± 5 °C) for 2–3 OH• d, as reported by Saha et al. (2018a). The trend in the change according to increasing OH• d in this study was like that of overseas studies. However, there were differences in the seasonal trend and the range of result values due to the following: First, even if overseas results were obtained in the same season as this study, there is a temperature effect due to the difference in actual seasonal temperatures by country. This is because temperature influences vehicle combustion efficiency and semi-volatile species gas-to-particle partitioning (Platt et al., 2017; Robinson et al., 2007). Second, there was a difference in the proportion of traffic volume by fuel type. As per the research of Saha et al. (2018a) and Tkacik et al. (2014), gasoline vehicles were the main fuel type, accounting for more than 90%. However, research by Liu et al. (2019) had a mixed fuel type condition with gasoline at 40.8%, diesel at 30.3%, and LPG at 28.9%. For this study, the proportion of gasoline and diesel was higher, with gasoline at 46–54%, diesel at 36–46%, and LPG at 9–11%. Therefore, the VOC, IVOC, and SVOC emission levels vary depending on the fuel type contribution, and thus the consequent SOA formation level changes (Hu et al., 2022; Zhao et al., 2017; Zhao et al., 2016; Zhao et al., 2015).

3.4. Seasonal morning hour SOA estimation

Fig. 4 shows the SOA production estimation comparison calculated according to Section 2.4 and SI Section S1 from the organic and VOC groups formed inside the OFR during the morning (9:30–11:30). The total values of roadside organic, eBC, and OAPE during the morning hours were 70.2 ± 17.9 µg m⁻³, 67.9 ± 28.5 µg m⁻³ for summer and spring, respectively, which are higher than the values of other seasons. During winter, the values were 25.5 ± 7.0 µg m⁻³ during the normal period, 24.4 ± 4.2 µg m⁻³ during KNY, and during fall, the values were 51 ± 16.4 µg m⁻³ during the normal period, 32.1 ± 8.3 µg m⁻³ during KTD. As for OAPE, for ~1 OH• d, the values were ~41.8 ± 11.2 µg m⁻³ during summer, 30.5 ± 21.9 µg m⁻³ during spring, 20.1 ± 13.3 µg m⁻³ during fall-normal, and 13.0 ± 4.9 µg m⁻³ during KTD. During winter, for ~5 OH• d, the values were 2.6 ± 0.7 µg m⁻³ during winter-normal and 3.6 ± 0.9 µg m⁻³ during KNY. In terms of total organic production estimated from the VOCs groups, the values were 27.7 ± 7.3 µg m⁻³ during winter-normal and 15.1 ± 2.5 µg m⁻³ during KNY. These result values are ~11 and ~4.2 times higher than the OAPE result. In other seasons, the ratio of OAPE to the estimated SOA production was 1.9–6.4, indicating that the estimated production was lower than the measured production. This underestimation trend was similarly observed in the results of the OFR vs. SOA estimation reported by Liao et al. (2021), Shah et al. (2020), and Saha et al. (2018a). For ASOA in winter, the values were 1.6 µg m⁻³ during normal winter and 1.2 µg m⁻³ during KNY, accounting for 62% and 33% of OAPE, respectively. As for ASOA in spring, summer, and fall, the values were ~1–4%. Thus, it is expected that the contribution of the major urban VOC components in the city center area to SOA formation in photochemical reactions is low. For S/IVOCs-SOA during the winter, the values were 25.9 µg m⁻³ during a normal winter and 13.7 µg m⁻³ during KNY, which are 10 times and 3.8 times larger than the value of OAPE, which is thought to be due to the application of the S/IVOCs factor at room temperature. The reason is that S/IVOCs factors in this study are the result of chasis dynamometer test at ~47 °C mixed exhaust with air, and S/IVOCs have a high proportion of gas-phase (Saha et al., 2018a; Zhao et al., 2016; Zhao et al., 2015). However, with a decrease in temperature, the evaporation of the component decreases, and the ratio of particle-phase increases. Therefore, at real-world low temperatures below zero due to the decrease in yield from reduced gas-phase S/IVOCs and low photochemistry activity,
the actual value of S/IVOCs-SOA is expected to be smaller (Drozd et al., 2021; Huang et al., 2019; Saha et al., 2018a). As for BSOA, the value was 1.4 μg m⁻³ during the summer when the tree activity level was higher than in other seasons; however, it had a small proportion of 3% among OA PE groups. Therefore, an SOA estimation approach is required based on emission component fitting to the tree varieties around the site. The seasonal values of S/IVOCs-SOA ranged from 11 to 49% of OA PE (excluding winter). With the inclusion of ASOA and BSOA, there is a gap of 6.9–35.3 μg m⁻³. Thus, to improve the SOA estimation approach’s accuracy, the expansion of precursors and the shifting contribution of the gas-to-particle partitioning of volatile species for temperature should be considered.

4. Conclusion

Through in situ measurements, we completed a case study in South Korea that discusses a comprehensive seasonal trend analysis for the chemical characteristics of roadside pollutants and SA. The study’s findings provide useful scientific reference data for evaluating and reducing roadside pollutants and highlight the need for additional research on various roadside environments in urban areas. The main findings of this study are as follows: Most seasonal roadside pollutants in Seoul in 2019 showed the highest concentration levels during the spring, followed by winter, summer, and fall. Regardless of the season, the 6–7 a.m. NO₂, SO₂ peaks and eBC showed a distinct similarity to the diesel vehicle traffic volume pattern. The NH₃ concentration increased up to the seasonal maximum of ~208 ppb (spring), consistent with the increase traffic volume. Regarding correlation with CO (excluding the winter season), the value of Pearson’s r ranged from 0.724 to 0.834, indicating a high linear correlation. Considering the result of Park et al. (2019, 2021a), in which the main fuel types for CO and NH₃ emissions were reported to be gasoline and LPG vehicles mounted with TWC, the NH₃ vs. CO approach described in this study is expected to be useful for the level of contribution evaluation for NH₃ from the roadside environment with a combination of fuel types. During the ~4.5 OH⁻d condition, common throughout seasons, the peak OAPE value was ~1.5 μg m⁻³ in the winter, significantly lower than the peak value of ~57.7 μg m⁻³ for the other seasons. The value of Δorganic/ΔCO (μg m⁻³ ppm⁻¹) was ~3.4 μg m⁻³ ppm⁻¹, which is lower than the summer season peak value of ~414.7 μg m⁻³ ppm⁻¹. OA PE had a ~5.5 times higher value than roadside organic pollutants in other seasons, accounting for 50.9–70.2% of the total sum (organic + eBC + OA PE) and only ~5.5% in winter (SI Table S9). Therefore, even with an increase in OH⁻d, the contribution from primary emissions is greater than the SOA contribution from photochemical reactions during the winter season.

For the seasonal trend (excluding winter), IVOCs accounted for 11–47% SOA formation during the morning (9:30–11:30). Although the study was based on the findings of previous studies, more research on IVOCs is needed to understand and interpret SOA formation trends in South Korea. Finally, we would like to emphasize the following: The particulate matter filter after-treatment device reduced motor vehicle particulate matter emissions in South Korea to an unprecedented level. However, when it came to reducing gas phase pollutants, the focus was primarily on NOₓ. Although the reduction of NOₓ emissions from motor vehicles is critical, the findings of this study and the results of several overseas research highlight the importance of reducing NH₃ emissions from vehicles mounted with TWC and reducing S/IVOCs emissions among NMOGs regardless of fuel type to achieve a real reduction in SA formation. Thus, further research is needed to address the issues raised above and policy-backed reduction measures.

CRediT authorship contribution statement

Gyutae Park: Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft, review, editing. Seokwon Kang: Methodology, Formal analysis. Min-Suk Bae: Validation, of VOCs results, cooperation of the measurement site. Yunsung Lim: Formal analysis, installation sampling system. Chan-Soo Jeon: Resources, Investigation. Taehyung Lee: Conceptualization, Project administration, Supervision, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Appendix A. Supplementary material

Appendix B. Supplementary data

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.atmosenv.2023.120051.

References

