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Table. S1 Seasonal roadside information during measurement 

 Winter Spring Summer Fall 

Period 

1/28/2019–
2/08/2019 

*Korean New 
Year (KNY): 

2/02/2019 00 – 
2/07 00 

04/15/2019–
27/04/2019 

07/09/2019–
07/16/2019 

09/09/2019–
09/19/2019 

*Korean 
Thanksgiving Day 
(KTD): 9/12/2019 
00 – 9/16/2019 00 

T (°C) –3.9 ± 4.9 14.1 ± 4.7 24.8 ± 3.3 23 ± 3.3 

RH (%) 47.3 ± 17 67.5 ± 21.6 67.7 ±15.7 64.3 ± 20.2 

Traffic Volume 

(# day–1)a 
67,279 ± 6,683 72,966 ± 1,975 70,028 ± 3,232 66,949 ± 5,554 

% of gasoline b 
54% 

36,901 ± 4,480 

46% 

34,885± 1,137 

43% 

31,950 ± 1,736 

46% 

32,033 ± 1,254 

% of diesel c 
36% 

25,868 ± 7,685 

45% 

33,212 ± 2,572 

46% 

32,976 ± 3,714 

45% 

30,471 ± 5,491 

% of LPG d 
10% 

4,510 ± 1,234 

9% 

4,868 ± 563 

11% 

5,102 ± 486 

9% 

4,446 ± 382 

Traffic Speed 
(km hour–1)e 69.2 ± 11.9 69.3 ± 1.4 64.8 ± 6.9 63.9 ± 7.2 

a,e The total volume and average speed of traffic were measured by HD Digital Wave 
Radar(smart Sensor HD Model 126, Wavetronix, Provo, UT, USA), b–d the video watch 
analysis was applied to 6 min in an hour day the interval of ten minutes and calculated them 
using the statistical extraction method with traffic volume (# hour–1). This approach was 
followed by Park et al. (2021a), who conducted the tunnel project in the same location with 
the same traffic instrument. d) for taxi vehicles. 

  



 

Fig. S1. Scatter plot of roadside and OFR aerosol volume result from AMS plus eBC vs. SMPS 
with regression line. (a), (b) and (C) were applied to the default CE = 1. (d) was calculated 
using composition-dependent collection efficiency (CDCE) as Middlebrook et al. (2012). 
Aerosol densities of 1.75 g cm–3 for nitrate, sulfate and ammonium, 1.52 g cm–3 for chloride, 
1.77 g cm–3 for eBC (Ahlberg et al., 2019; Park et al., 2004; Palm et al., 2016). A density of 
organic (unit: cm–3) was estimated based on the improved elemental composition of [12 + 
1*(H/C) + 16*(O/C)]/[7+5*(H/C) + 4.15*(O/C)] (Canagaratna et al., 2015; Kuwata et al., 
2012). 

 



 

Fig. S2. Comparison of modeled O3 concentration from photochemical model and measured 
O3 concentration after OFR in seasons. 
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Fig. S3. Relationship between the organic after OFR inside 0% lamp intensity and roadside 
organic. The winter season wasn`t conducted of dark-OFR, so we applied the average value 
0.88919 of other seasons. 

 

 

 

  

30

25

20

15

10

5

0

D
ar

k-
O

FR
 o

rg
an

ic
 (μ

g 
m

-3
)

302520151050

Roadside organic (μg m
-3

)

 2019 spring, y = 0.91593
 2019 summer, y = 0.87395
 2019 fall, y = 0.8777



Section S1. Morning hour SOA estimation (Fig. S4, Equation S1–S3, Table S2–4) 

The purpose of this method is to investigate the seasonal trend in the contribution levels of 
major component groups among the secondary organic aerosols (SOA) formed in the morning 
hours (9:30–11:30) on the roadside. Since the concentration of anthropogenic volatile organic 
compounds (AVOCs) was not measured in this study, the results of the tunnel project conducted 
previously in the same location were utilized. Since the measurements of the tunnel project 
were conducted in winter (January) and spring (April) at the same time as this project, the data 
show consistency. Likewise, for measurements in the fall (September), the SOA components 
were measured using a proton transfer reaction mass spectrometry (PTR-MS, Iconic), so the 
measurement hours are the same. However, in the case of summer (July), data from the summer 
(July) 2018 was used, and data were matched only for overlapping days of the week (Table S2). 
Fig. S4 shows the pattern of traffic volume during the study period. The average traffic volume 
from July 28 to August 6, 2018 was 70,328 ± 856 (vehicles day-1), which does not show a 
significant difference from 70,025 ± 3,232 (vehicles day-1), the traffic volume during the 
summer measurement period of this study. Thus, it is thought that there was no significant 
change in the pollutants from motor vehicle emissions. 

 

 

Fig. S4. Hourly pattern of average traffic volume (# hour-1) in 2019 and 2018 summer projects. 
The traffic volumes were measured by HD Digital Wave Radar (smart Sensor HD Model 126, 
Wavetronix, Provo, UT, USA). 
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Table. S2. The result of anthropogenic volatile organic compounds (AVOCs): winter, spring, 
and fall were the same period, and the summer result was part of the 2018 summer project. 

Unit : μg m−3 

Season Benzene Toluene Ethylbenzene m,p-xylene o-xylene 

Winter 4.3 ± 1.2 10.3 ± 8.2 1.4 ± 1-1 1.9 ± 1.3 0.7 ±0.5 

Spring 3.1 ± 0.8 20.6 ± 11.9 5.7 ± 3.7 5.8 ± 3.5 2 1.2 

Summer 
2018 3.7 ± 2.0 16.3 ± 8.4 6.8 ± 3.7 5.9 ±2.9 4.8 ± 2.2 

Fall 2.3 ± 0.7 2.1± 1.1  1.8 ± 0.9a)  

a) The sum of ethylbenzene and m,p,o-xylene 

 

Biogenic VOCs (BVOCs) have been reported to be closely associated with temperature and 
photosynthetically active radiation (PAR) (Alves et al., 2016; Seco et al., 2015; Warneke et al., 
2010). Therefore, in this study, referring to the method of Saha et al. (2018), using the result 
values of BVOCs measured using PTR-MS during the fall season, the formula proposed by 
Guenther et al. (1995) was applied to derive the seasonal concentration of BVOCs with respect 
to temperature and PAR. In the equations S1–S3, cT is a function of temperature, and cL is a 
function of PAR, and since radiation is not measured in this study, the value of PAR was 
assumed to be 1. 

 

Real BVOCsiconc =  base conc (fall) ×  𝑐𝑐𝑇𝑇  ×  𝑐𝑐𝐿𝐿 (S1) 

Isoprene  

𝑐𝑐𝑇𝑇 =  
𝑒𝑒(37.711−0.398570815 ×𝑑𝑑𝑑𝑑)

1 + 𝑒𝑒(91.301−𝑑𝑑𝑑𝑑) , 𝑑𝑑𝑑𝑑 =  
28668.514

𝐾𝐾
 

(S2) 

Monoterpenes, sesquiterpene  

𝑐𝑐𝑇𝑇 =  𝑒𝑒(0.09 ×(𝐾𝐾−303)) (S3) 

 

Among the roadside organic, for calculation of semi-volatile organic compounds (SVOCs) 
and intermediate organic compounds (IVOCs) production, hydrocarbon-like organic aerosol 
(HOA) factor of the positive matrix factorization (PMF) approach was used (Paatero and 
Tapper, 1994). The PMF in this study was applied the Multilinear Engine 2 solver (ME-2, 
Paatero, 2000) controlled within the Source Finder software (SoFi Pro 8.0.4) toolkit for Igor 
pro 8 (Canonaco et al., 2013, 2015, 2021; Crippa et al., 2014; Paatero, 2000). However, in this 
study, because source groups other than HOA were not considered, PMF was run through a 
comprehensive unconstrained run under the condition of a-value 0. The HOA profile extracted 



in this way was compared with representative tracer ions, gases, and eBC in terms of the 
Pearson correlation coefficient (r). In addition, the HOA profile was also compared with the 
HOA profile of Crippa et al. (2013) provided from the high resolution AMS spectral database 
for final decision. 

HOA is related to fossil fuel emissions such as motor vehicles, and typical mass-to-charge 
ratios (m/z) in AMS database are 41, 43, 55, and 57, showing strong signals for C3H5

+, C3H7
+, 

C4H7
+, and C4H9

+ (Crippa et al., 2013; Kim et al., 2018; Sun et al., 2011; Zhang et al., 2005). 
In addition, HOA shows a high correlation with carbon monoxide (CO), nitrogen oxide (NO𝑥𝑥), 
and equivalent black carbon (eBC), which are representative products of combustion (Lee et 
al., 2017; Li et al., 2019; Shah et al., 2018). Table S3 shows the results of comparing Pearson's 
r between the components in this study and unconstrained HOA factor, and for AMS tracer ion, 
the Pearson's r was 0.5−0.99, confirming a high correlation. Also, the Pearson's r for CO, eBC, 
and NO𝑥𝑥 was 0.34 to 0.78, thus showing a high correlation with the major components of motor 
vehicle emissions. In the case of NH3, a correlation of 0.16−0.67 was derived due to the short 
distance between the sample inlet and the lane and NH3 emissions from gasoline and LPG 
vehicles. 

 

Table. S3. Correlation coefficients (Pearson’s r) of HOA factor in the roadside of four seasons 
with AMS tracer ions, gases, particle, and reference profile of HOA.  

Compounds Winter HOA Spring HOA Summer HOA Fall HOA 
C3H5(m/z 41) 0.9 0.62 0.5 0.8 
C3H7(m/z 43) 0.98 0.92 0.89 0.97 
C4H7(m/z 55) 0.97 0.83 0.77 0.94 
C4H9(m/z 57) 0.99 0.97 0.94 0.99 

eBC 0.62 0.39 0.36 0.34 
NO𝑥𝑥 0.67 0.78 0.82 0.53 
CO 0.42 0.58 0.57 0.41 
NH3 0.16 0.67 0.58 0.42 

HOA profilea) 0.95 0.92 0.93 0.93 
a) This profile was Crippa et al. (2013)`s result that uploaded to the AMS spectral 
database(http://cires1.colorado.edu/jimenez-group/HRAMSsd/) 

 

  



For the final calculation of SOA estimation, Equation 1 in the manuscript was used, and the 
OH rate constant for each required component and the SOA yield under high NO𝑥𝑥 conditions 
are summarized in Table S4. 

 

Table. S4. Lists of organic groups OH rate constant (25 ℃, molecules cm−3) and SOA yield 
under high NO𝑥𝑥 condition. 

Compound 
OH rate constant 
(cm3 molec.−1 s−1) Reference 

SOA 
Yield Reference 

AVOCs 

Benzene 1.2 × 10-12 Atkinson et al. (2006) 0.281 Ng et al. (2007a) 

Toluene 6.05 × 10-12 Atkinson et al. (2006) 0.08 Ng et al. (2007b) 

Ethylbenzene 7 × 10-12 
Atkinson and Arey 

(2003) 
0.072 Yao et al. (2016) 

m+p-xylene 1.87 × 10-11 
Atkinson and Arey 

(2003) 0.08 Ng et al. (2007a) 

o-xylene 1.36 × 10-11 
Atkinson and Arey 

(2003) 
1.37E-4 Zhang et al. (2020) 

BVOCs 

Isoprene 1 × 10-10 Atkinson (1997) 0.02 Yao et al. (2016) 

Monoterpenes 
(α-, β-pinene) 6.63 × 10-11 Atkinson (1997) 0.11 

-α -pinene 
Ng et al. (2007b) 
β-pinene 
Sarrafzadeh et al. 
(2016) 

Sesquiterpene 
(longifolene) 4.8 × 10-11 

Atkinson and Arey 
(2003) 

0.89 Ng et al. (2007b) 

S/IVOCs vehicles exhaust 

Gasoline 2.0 × 10-11 Nault et al. (2018) 0.24 Shah et al. (2020) 

Diesel 2.0 × 10-11 Nault et al. (2018) 0.38 Shah et al. (2020) 
 

  



Table. S5. Registered vehicles in South Korea in 2019. This result was in supporting 
information of Park et al. (2021b) 

 

  

No. Fuel 
South Korea Seoul 

Count Portion Count Portion 

1 Gasoline 21,921,558 46.3% 1,597,621 51.1% 

2 Diesel 19,915,086  42.1% 1,140,532 36.5% 

3 Liquefied petroleum gas (LPG) 4,009,460  8.5% 279,713 9.0% 

4 Kerosene 2 0.0% - - 

5 Electric 179,836 0.4% 10,175 0.3% 

6 Alcohol 2 0.0% - - 

7 Compressed natural gas (CNG) 76,294 0.2% 9,607 0.3% 

8 Liquefied natural Gas (LNG) 10 0.0% - - 

9 Hybrid (gasoline + electric) 976,256 2.1% 78,778 2.5% 

10 Hybrid (diesel + electric) 1,204 0.0% 31  0.0% 

11 Hybrid (LPG + electric) 33,980 0.1% 1,939 0.1% 

12 Hybrid (CNG + electric) 654  0.0% 51 0.0% 

13 Hybrid (LNG + electric) - 0.0% - - 

14 Hydrogen 10,166 0.0% 143 0.0% 

15 Others 230,224 0.5% 5,699 0.2% 
 Total 47,354,732 100% 3,124,289 100% 



Table. S6. Average (± 1σ standard deviation) concentration of gaseous and aerosols on the 
roadside with comparison data of the monitoring station from the distance of 3.2 km in this site. 

 Winter Spring Summer Fall 
CO (ppm) 1.49 (± 0.36) 1.83 (±0.63) 1.26 (± 0.6) 1.11 (± 0.38) 
CO2 (ppm) 589 (± 112) 640 (± 143) 605 (± 143) 569 (±113) 
NH3 (ppb) 81.5 (± 28.4) 141.7 (± 50) 94.3 (± 41.3) 62.4 (± 27) 
NO𝑥𝑥 (ppb) 686 (± 442) 798 (± 499) 407 (± 325) 308 (± 267) 

NO / NO𝑥𝑥 0.7 0.8 0.7 0.8 
SO2 (ppb) 7.39 (± 5.66) 9.66 (± 5.71) 6.61 (± 1.63) 1.41 (± 1.04) 
O3 (ppb) 4.35 (± 4.84) 3.45 (± 2.8) 6.26 (± 3.82) 9.63 (± 4.02) 

PMAMS+eBC 
(μg m−3) 30.4 (± 13.1) 38.0 (± 19.8) 31.1 (± 18) 25.3 (± 12.3) 

eBC  9.0 (± 6.43) 18.7 (± 12.31) 11.6 (± 8.23) 10.0 (± 7.83) 
Organic 10.9 (± 4.8) 9.1 (± 5.2) 8.7(± 4.9) 10.1 (± 4.8) 
Nitrate 4.7 (± 3.4) 4.4 (± 3.9) 3.4 (± 3.7) 1.4 (± 2.3) 
Sulfate 2.9 (± 2.0) 3.3 (± 2.0 5.0 (± 4.2) 2.5 (± 1.7) 

Ammonium 2.5 (± 1.5) 2.4 (± 1.6) 2.4 (± 2.1) 1.2 (± 1.1) 
Chloride 0.5 (± 0.3) 0.2 (± 0.2) 0.1 (± 0.1) 0.1 (± 0.1) 

Near monitoring station far from 3.2 km classified urban air pollutants in Seoul 
PM10 (μg m−3) 59.4 41.3 7.7 a) 8.1 
PM2.5 (μg m−3) 24.9 19.5 8.1 b) 11.3 

O3 (ppb) 16.8 30.1 35.2 c) 27.7 
NO2 (ppb) 35.5 35.6 9.3 d) 16.8 
CO (ppm) 0.6 0.5 0.31 e) 0.43 
SO2 (ppb) 3.9 3.2 4 f) 4 

a-f) There were loss data period of 7/11/2019 12:00 to 7/16/2019 17:00 in summer. So these 
data were not comparable with ours result.  

 

 

 

 



 

Fig. S5. The Pearson`s correlation coefficients (r) between NH3 (ppb) and CO (ppm) during 
real-time measurement period. 
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Fig. S6. Diurnal pattern of (a) O3 and (b−c) average traffic volume of each fuel type (gasoline, 
diesel, and LPG) in seasons. 

 

  



Table. S7. Comparison result (± 1σ standard deviation) of normal days and holidays in Korea 
on the roadside. 

compound 
Winter Fall 

KNY Winter-normal KTD Fall-normal 
AMS + eBC 

(μg m−3) 
32.16 

(± 11.58) 
28.95 

(± 14.1) 
23.64 

(± 10.14) 
26.54 

(± 13.48) 
eBC 8.2 (± 5.34) 9.71 (± 7.17) 6.53 (± 3.62) 12.58 (± 9) 

Organic 11.38 (± 4.81) 10.52 (± 4.83) 10.81 (± 4.4) 9.62 (± 5.01) 

Nitrate 5.46 (± 3.27) 3.99 (± 3.27) 2.25 (± 3.25) 0.8 (± 0.78) 

Sulfate 3.63 (± 2) 2.24 (± 1.68) 2.57 (± 1.74) 2.51 (± 1.61) 

Ammonium 2.96 (± 1.55) 2.06 (± 1.4) 1.41 (± 1.42) 0.98 (± 0.67) 

Chloride 0.53 (± 0.34) 0.43 (± 0.28) 0.08 (± 0.09) 0.05 (± 0.12) 

O3 (ppb) 4.8 (± 6) 4 (± 3.4) 9.7 (± 3.5) 9.5 (± 4.4) 

CO (ppm) 1.47 (± 0.33) 1.51 (± 0.38) 1.01 (± 0.27) 1.19 (± 0.44) 

CO2 (ppm) 575.5 (± 91.5) 600.2 (± 125.7) 531.5 (± 75.3) 596.4 (± 127.8) 

SO2 (ppb) 4.97 (± 2.82) 9.5 (± 6.58) 0.9 (± 0.5) 1.8 (± 1.2) 

NO (ppb) 362.3 (± 198.6) 660.1 (± 433.8) 143.8 (± 103) 313.1 (± 254) 

NO2 (ppb) 145.4 (± 55.9) 203.1 (± 94.5) 48.3 (± 34.9) 85.9 (± 56) 

NO𝑥𝑥 (ppb) 501.3 (± 239.7) 845.7 (± 510.1) 190.2 (± 134.8) 395.3 (± 304.7) 

NO/ NO𝑥𝑥 0.69 (± 0.09) 0.75 (± 0.08) 0.75 (± 0.1) 0.77 (± 0.1) 

NH3 (ppb) 91 (± 31.3) 73.3 (± 22.6) 54.8 (± 20) 68 (± 29.9) 
Ratio of the truck 
in diesel vehicles 0.11 0.3 0.09 0.28 



 

 

  

Fig. S7. (a) the ratio of holidays and normal days in gaseous compounds and aerosols. (b) The 
total volume of diesel vehicle and contribution of categories in diesel vehicles. (c) the 
comparison of NH3 and CO in normal days and holidays on winter and fall. 



Table. S8. The range of organic and inorganic potential enhancement and photochemical OH 
concentration modified OFR in seasons. (The result unit of compound in AMS is μg m−3) 

Compound Winter normal 
(Winter KNY) Spring Summer Fall normal 

(Fall KTD) 

OAPE 0.4−1.5 
(0.8−1.6) 28.4−52.3 40.5−57.7 18.1−31.1 

(12.1−21.9) 

NitratePE 0.4−1.5 
(0.9−1.5) 82.2−141.2 158.6−251.4 165.3−290.8 

(126.2−214.9) 

SulfatePE 0.2−0.5 
(0.1−0.6) -0.2−0.01 -1.0 − -0.2 -1.6− -0.9 

(-1.6 – -0.7) 

AmmoniumPE -0.3−0.1 
(-0.2−0.1) 25.6−43.7 49.9−78.9 42−73.3 

(32.2−56.1) 

ChloridePE -0.4−0.2 
(-0.4−0.2) 0.06−0.1 0.22−0.24 0.1−0.3 

(0.03−0.1) 

OAPE / CObkg-cor 
(μg m−3

 ppm−1) 
1.1−3.4 
(1.9−8) 41.2−157.4 89.5−414.7 41.6−151.5 

(34.9−77.3) 

Photochemical 
OH· day 

0.5—8.4 
(0.6—8.5) 0.4−3.3 0.2−4.0 0.2−4.3 

(0.2−4.3) 
* Negative values meant time difference between direct measurement and OFR 
measurement 

 

  



 

  

Fig. S8. Seasonal inorganics potential enhancement (inorganicPE = secondary inorganic aerosol 
formed and corrected in oxidation flow reactor – inorganic corrected in the roadside) by 
increasing OH concentration inside the OFR. (a) nitrate. (b) sulfate. (c) ammonium. (d) 
chloride. 



  

Fig. S9. Van Krevelen diagrams of H/C vs. O/C ratios of organic from roadside and after 
oxidation by OH. 



 

 

Fig. S10. (a−d) the timeline of CO (red line) and calculated background CO (black line) in 
seasons. (e) the average concentration of the background CO level on the roadside. 

  



Table. S9. The range of organic, eBC, organic potential enhancement (OAPE), and proportion 
of the OAPE under ~4.5 OH day. (The resulting unit of compound is μg m−3) 

Compound Winter Spring Summer Fall 
KNY Normal KTD Normal 

eBC 8.2 9.71 18.7 11.6 6.53 12.58 
Organic 11.38 10.52 9.1 8.7 10.81 9.62 
OAPE 1.0 1.2 41 47.9 17.9 26.4 

Ratio of OAPE to 
total(organic, eBC, 

OAPE) 
5.1% 5.5% 59.6% 70.2% 50.9% 54.3% 
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