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ARTICLE INFO ABSTRACT

Editor: Philip K. Hopke In this study, two top-down methods—mass balance and Gaussian footprint—were used to determine SO, emissions
rates via three airborne sampling studies over Korea's largest coal power plant in October 2019 and 2020. During

Keywords: the first two flights in October 2019, mass balance approaches significantly underestimated the SO, emissions rates

SO% . by 75 % and 28 %, respectively, as obtained from the real-time stack monitoring system. Notably, this large discrep-

EMnazzs]l:aln:nce ancy accounted for the insufficient number of transects altitudes and high levels of background SO, along the upwind

Gaussian footprint side. Alternatively, the estimated SO, emissions rates of the third flight (October 2020) displayed a difference of <10 %
Point sources from rea-time monitoring data (630 vs. 690 kg'hr ™), owing to the enhanced vertical resolution with increased tran-
sects and lower background SO, levels. In contrast to the mass balance method, Gaussian footprints offered signifi-
cantly improved accuracy (relative error: 41 %, 32 %, and 2 % for Flights 1, 2, and 3, respectively). This relatively
good performance was attributed to prior emissions knowledge via the Clean Air Policy Support System (CAPSS) emis-
sions inventory and its unique ability to accurately estimate stack-level SO, emissions rates. Theoretically, the Gauss-
ian footprint was less prone to sparse transects and upwind background levels. However, it can be substantially
influenced by atmospheric stability and consequently by effective stack heights and dispersion parameters; basically,
all factors with minimal-to-no influence on the mass balance approach. Conversely, the mass balance method was the
only plausible approach to estimate unidentified source emissions rates when well-defined prior emission information
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was unknown. Here, the footprint approach supplemented the mass balance method when the emission inventories
were known, and employing both strategies approaches greatly enhanced the integrity of top-down emissions inven-
tories from the power plant sources, thus, supporting their potential for ensuring operational compliance with SO,

emissions regulation.

1. Introduction

Atmospheric SO, can cause adverse effects on both humans and ecosys-
tems (Cape et al., 2003; Henschel et al., 2012). WHO (World Health
Organization, 2021) has noted substantial excess mortalities above air qual-
ity guideline (AQG) concentrations of 40 pg'm ~ > SO,. Furthermore, recent
studies have confirmed the health benefits of reducing SO, levels below
AQGs (Orellano et al., 2021; Zheng et al., 2021), demonstrating a ~1 %
increase in hospital admissions and 0.6-0.7 % increase in mortality per
every 10 pg'm 2 increase in daily mean SO, levels above zero levels. Addi-
tionally, SO, is the primary precursor of sulfate aerosols, which signifi-
cantly impact health and climate (Lelieveld and Heintzenberg, 1992; Park
et al., 2018). Fortunately, ambient SO, emissions and concentrations in
many parts of the world have decreased substantially due to compulsory
regulations and technologies, primarily from large point sources, such as
coal power plants (Kim and Yeo, 2013; Tang et al., 2020). As part of the ver-
ification and supervision process, reported SO, emissions inventories and
compliance with legal regulations must be verified periodically by monitor-
ing the major emissions sources.

Atmospheric SO, primarily originates from fossil fuel combustion, par-
ticularly that of coal and oil. Point sources from energy production, indus-
trial, and manufacturing facilities are the predominant SO, emissions in
Korea, accounting for 81 % of the 358 kt SO,yr ' released (Choi et al.,
2020). Specifically, power plant emissions account for the most significant
proportion (31 %) of the point sources; accordingly, strict regulations have
been placed by setting SO, emissions limits for each stack in all large-scale
point sources. The emitted SO, concentrations and air flows from all stacks
in selected point sources are measured continuously in real time and are
collected by an online central server to ensure compliance (Choi and Jo,
2011). Currently, automatic telemonitoring systems are installed in 1477
stacks across 569 facilities in South Korea, and their real-time data can be
accessed via Cleansys (https://cleansys.or.kr/index.do). Conventionally,
the quality of hourly stack SO, monitoring data has been evaluated by per-
formance reviews using side-by-side intercomparisons with a reference
method every 2 years. However, this bottom-up approach is impractical
due to the sheer number of stacks requiring periodic monitoring.

Alternatively, optical open-path remote sensing has been used to moni-
tor emissions along facility boundaries and beyond (Sanchez et al., 2019;
Smith, 2015). Although it is an excellent tool for monitoring fugitive emis-
sions and leak detections of area sources, it is inadequate for observing
elevated emissions from high-level point sources, such as stacks. Satellite
measurements have also proven capable of monitoring sizeable SO, point
sources (Carn et al., 2007; McLinden et al., 2012; Theys et al., 2015);
however, these studies have successfully assessed anthropogenic SO, emis-
sions over the long-term, while variations in short-term (hourly to daily)
emissions rates (ERs) remain largely unexplored (Duncan et al., 2014).

Airborne measurements using a mass balance model represent one top-
down approach for real-time estimation of ground emissions sources
(Gordon et al., 2015). For example, Fried et al. (2020) estimated volatile
organic compounds (VOCs) and SO, emissions from a petrochemical
facility in Korea using DC-8 measurements, obtaining a strong agreement
of SO, estimates between airborne top-down and bottom-up values. Addi-
tional SO, emission assessments from large point sources in facilities
throughout Korea have been conducted using airborne observations (Kim
et al., 2020; Park et al., 2020) by applying a similar mass balance model
to calculate SO, emissions, successfully demonstrating the utility of this
top-down approach at estimating point source emissions. Another top-
down approach combines observations at receptors with a dispersion
model via an inverse technique and has been widely used elsewhere to

estimate various emission inventories from local- to global scales (Ars
et al., 2017; Brioude et al., 2011; Stohl et al., 2009; Vaughan et al.,
2016). This inverse method is known to be more unstable to small changes
in input parameters than other methods (Lushi and Stockie, 2010); thus,
they have been widely employed for evaluating the emissions of conserva-
tive and inert species like halocarbons (Stohl et al., 2009). Alternatively,
emissions estimates using this technique for reactive and aerosol species
have focused on near-field point or area sources (Brioude et al., 2011;
Cantelli et al., 2011; Hosseini and Stockie, 2016; Vaughan et al., 2016).
For example, SO, emissions from point sources were tested using experi-
mental field data across a flat grassland under different atmospheric
stability conditions, revealing that the inverse technique with the Gaussian
plume model produced reasonably well-defined SO, point-source
emissions estimates given known source heights, locations, and nominal
atmospheric conditions (Mao et al., 2022).

In the present study, two top-down approaches—mass balance and the
Gaussian footprint method—were employed to estimate power plant SO,
emissions using aircraft observations. The results of each approach were
compared with real-time stack monitoring data, and implications were
drawn regarding the feasibility of monitoring airborne SO, ERs for large-
scale point sources. The accuracy and uncertainties in determining SO»
ERs were identified for each model. The present study aimed to assess the
advantages of multi-approach top-down estimation methods for minimiz-
ing the differences between emissions inventories and real-world data.

2. Methods
2.1. Taean power plant

The Taean power plant was selected for this analysis based on its well-
established emissions inventories and real-time stack monitoring data
availability. It is the largest operational coal-power plant in Korea and is
located 100 km southwest of Seoul along the western coast of the Korean
Peninsula (Fig. 1). Taean is the world's second-largest coal plant, with a
6.1 GW power capacity (Nassar et al., 2021). The plant consists of ten
power units with 150 m stack heights. These stacks were identified as the
point sources of 13,085 tSO,-yr~ ' emissions by the Clean Air Policy
Support System (CAPSS), the official emissions inventory. Real-time SO,
emissions from each stack are continuously measured by an automatic
monitoring system and stored in the Cleansys server. The national standard
stack monitoring method (Cleansys) requires the SO, emission uncertainty
to be <20 % relative to the daily ELV (Emission Limit Value) of 48 ppm. In
recent inter-comparisons, the Cleansys SO, measurement uncertainties
relative to ELV and percent errors relative to the reference method ranged
from 3.5 to 5.4 % and 8.9- 21 % (J. Kim, personal communication, August
4, 2022), respectively. Based on this, we assumed 20 % relative errors in the
Cleansys data. As this plant is located along a coastal area, stack plumes
from power plants are often clearly traced over relatively clean marine
background air, especially during daytime sea-breeze conditions (Abbs
and Physick, 1992).

2.2. Aircraft platform

Airborne SO, measurements were carried out by a Beechcraft 1900D
aircraft modified with four gaseous sampling and two aerosol inlets for
atmospheric research. It was equipped with an airborne weather probe,
AIMMS-30 (Aventech Research Inc. Barrie, Canada), consisting of an
ARIM200 air data probe system and a VECTRAX inertial altitude unit sys-
tem. ARIM200 is a weather sensing system that measures atmospheric


https://cleansys.or.kr/index.do

J. Kim et al.

Science of the Total Environment 855 (2023) 158826

Fig. 1. Layout of the Taean power plant on the west coast of South Korea. Red dots indicate the locations of seven stacks.

pressure, temperature, relative humidity, altitude, angle of attachment, and
relative wind components for the reference frame of the aircraft. In con-
trast, VECTRAX senses inertial acceleration, angular rates, attitude (with
corresponding roll, pitch, yaw), and GPS data, including time, position,
and velocity. This integrated system provides three-dimensional accurate
wind components with manufacture accuracy of 0.4 m/s for the wind
speed and + 0.04 rad for the wind direction at aircraft positions every sec-
ond, and 2 Hz measurements of SO, with a typical error of 12 % (Speidel
et al., 2007) were obtained with a chemical ionization mass spectrometer
(CIMS) using SFg as a reagent ion. The detailed analytical method for SO,
using a CIMS can be found in Park et al. (2020).

2.3. Aircraft SO, observations

Top-down estimates of SO, emissions from the Taean power plant were
performed during three flight observations: two on the morning and after-
noon of October 21, 2019 (Flight 1 and 2), and one on the afternoon of
October 27, 2020 (Flight 3). The aircraft circled the power plant at 3-8
different levels below the boundary-layer height, starting from 365 m to
914 m above sea level, to intercept the SO, plumes at a ~2 km radius
from the stacks, close enough so that the plumes from each stack maintain
their well-defined shape above the background levels and below the bound-
ary layer height. For safety, flight restrictions prevented aircraft from flying
below 350 m altitudes. Notably, the center of the stack plume can be dis-
persed below these minimum flight levels under strong wind conditions.
The top-down airborne methods employed here are likely to significantly
underestimate source emissions (a topic discussed further in the Results
and Discussion).

2.4. Mass balance approach
Recent airborne studies have extensively applied mass balance tech-
niques to derive surface ERs (Fried et al., 2020; Gordon et al., 2015;

Heimburger et al., 2017; Park et al., 2020). ERs were estimated via mass
balance in a cylindrical box (Eq. (1)):

ER(g-s7') = /Oz /Oy Ucos(0)C;dydz (1)

where ER is the integrated emissions rate for the horizontal (0-y) and ver-
tical (0-2) boundary lengths (m), which are the circumference length, and

height of the imaginary cylindrical box that the aircraft circularly flew
across the source area, respectively. The advective flux of SO, was
determined by integral multiplication of the observed SO, concentrations
(Cy ug'm_3), horizontal wind velocity (U, m's™ 1, and angle (6) between
the wind direction and that perpendicular to the cylindrical surface (i) of
the aircraft heading. Other flux-varying factors were considered insignifi-
cant, such as deposition, chemical reactions, air density changes, and turbu-
lent flux within the box. Vertical advective flux was excluded as there were
no instances of plumes passing through the top of the box throughout the
study period. To apply this model, C;, U, and 6 were determined at all gridded
points on the surface of the cylindrical box covering the circular flight paths
across all heights. These values were extrapolated at each gridded point
using kriging interpolation. Although significant gaps between the lowest
flight levels and ground surface were commonly observed, no observations
were made across these heights. As stack emissions sources are elevated
plumes =300 m above the ground, as calculated in Table 2, zero concentra-
tions were assumed at ground level, and linear extrapolations were made to
the vertically adjacent grid cells at the lowest heights of SO, observation.
Horizontal fluxes for all grid points at 9.5 m (z-axis) X 140 m (y-axis) resolu-
tion were projected onto a 2-D plane for each flight, and the calculated differ-
ences between the mean SO, influx and outflux were considered the SO, ER
for the stack sources within the cylindrical box.

2.5. Gaussian footprint approach

The Gaussian plume model has been widely used to predict the disper-
sion of air pollutants from point sources (Abd El-Wahab et al., 2014; Pan
et al., 2021). The concentrations at downwind distance x;, centerline
distance y, and height z from the multiple sources, with an effective height
H,, are given by Eq. (2):

2 72
exp(—%) exp(— (22;;211) > (2)

where ER; is the emission rate from each point source (gs~ 1; uis the wind
speed at the source level; and o, and o, are the horizontal and vertical
dispersion coefficients, respectively. The two dispersion coefficients were
calculated as functions of the downwind distance, along with different
atmospheric stability classes. These were determined using the wind
speed and solar radiation values during observation, by the Pasquill scheme

ER;
Crya) = Z 270, 0,
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(Venkatram, 1996). This forward model predicts the spatial distribution of
concentrations with a known emissions strength. The Gaussian model
requires the wind directions and speeds at each stack height that we did
not measure. However, the real-time observations of wind vectors at each
airborne sampling location were available. Using the Gaussian footprint
method, we could run it backward in time to calculate the emission sensitiv-
ity (footprint), which is the reverse source-receptor-relationship between
ERs (g~s’1) from receptors and concentrations (ppbv) at sources (Seibert
and Frank, 2004; Stohl et al., 2009). The SO, footprint fields (ppbv-s-g 1)
were calculated by running a backward Gaussian plume model using
inverted winds from the given airborne sampling locations as sources.
Stack parameters were subsequently used to calculate plume rises using
the Briggs equation, accounting for buoyancy effects by temperature differ-
ences and momentum effects by the exiting gas velocities according to the
Briggs atmospheric stability scheme (Briggs, 1969). In a conventional
Gaussian plume model, the effective stack height (stack height + plume
rise) is the origin of the plume advection and dispersion. Here, the individ-
ual footprint value was calculated for the effective stack height of each
stack location using the reverse Gaussian method.

The SO, footprint values (f;,,) at each stack location (m), as derived
from each observation position (1), were then used to estimate the emission
rate (ER,,) for each stack source to match the airborne observed SO,
concentrations (C,) via Eq. (3):

fu fo fis o fim ER, Ci
fo f?z fga f%m EBz _ | (3)

fn] fn2 fn3 fm_n ERpm Cn

The optimal ER set minimizes the differences between the observed and
calculated concentrations using linear regression or another statistical
approach (Ars et al., 2017). To solve this equation, a Bayesian linear regres-
sion method was applied here. Unlike the inverse Gaussian methods using
least squares, Bayesian linear regression can more readily address the un-
certainties and statistical soundness of solutions due to its ability to recover
the distribution of inferential solutions (Porwal and Raftery, 2022). The
Bayesian linear regression package (JAGS, Just Another Gibbs Sampler)
in R (v.4.0.5) was used to resolve this system (Su and Yajima, 2021). One
major disadvantage of this approach is that reasonable prior knowledge is
required to determine solutions accurately. Accordingly, CAPSS SO, inven-
tory data for the Taean power plant were used as a priori data for this study.
In addition, the Gaussian footprint technique assumes a stationary meteoro-
logical field and constant ER with time. A recent study revealed that the
accuracy of ER-derived by mass balance method was also affected by atmo-
spheric stability changes, wind vector variations, and emission source
changes (Fathi et al., 2021). Therefore, these potential sources of uncer-
tainty, including the airborne wind and SO, measurement errors, were
accounted for in the mass balance model calculation. However, the uncer-
tainties in the mass balance method were likely underestimated since we
did not analyze the uncertainties by stability changes and gridding errors
by interpolated data in-between the transects.

2.6. Flight times and meteorology

Three airborne SO, observations were made over the Taean power
plants on October 21, 2019 (n = 2) and October 27, 2020 (n = 1). The
average values of the meteorological variables and SO, concentrations
observed throughout the flights are listed in Table 1. All weather parame-
ters were acquired using the airborne weather probe, save for collecting
ground wind speed data via an automatic weather station near the power
station and solar radiation values obtained from the nearest fully equipped
Korea Meteorological Agency (KMA) weather station. Notably, it was
3-4 °C warmer and almost two times windier in the 2019 study period
compared with 2020; moreover, the observed SO, concentrations were
2-3 times higher in 2019. North to northeasterly winds were predominant
in 2019, whereas northwesterlies were dominant in 2020. In most cases,
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Table 1
Stability classes determined during the three flights and the means of their meteoro-
logical parameters at 10 m above ground level and 400 m height.

Parameters Height Flight 1 Flight 2 Flight 3
Stability class B B A/B
Temp (°C) Ground level 20.3 21.5 179
400 m 15.2 16.3 12.8
WD (deg) Ground level 50.7 1.2 305.0
400 m 53.4 19.8 294.7
WS (ms 1) Ground level 2.7 3.0 1.9
400 m 6.0 7.6 4.7
Solar radiation (MJm ~2) Ground level 2.0 1.8 1.5

sea breezes towards the landside were well characterized in the study
area situated along the coastal region. Greater solar radiation and higher
ground temperatures indicated intense daytime heating enhanced the
local wind system in 2019. Under these fast advection conditions, lateral
dispersion decreases over an equal distance. Wind speeds at 400 m were
roughly two times higher than ground speeds in all cases. In contrast, values
between the minimum flight altitude and ground level were extrapolated
using a logarithmic scheme (Garratt, 1994). According to the Pasquill,
atmospheric stability classification using wind speed and solar radiation,
atmospheric stabilities on the flight days in 2019 and 2020 were catego-
rized as classes B and A/B, respectively. These two stability classes were
used to calculate the stack's effective height (due to buoyant plume rise)
and the vertical and horizontal dispersion coefficients to run the Gaussian
plume model. The atmospheric stability during flight 3 was initially defined
as class A with the observed weather conditions. Notably, we found that the
vertical dispersion coefficients (o,) for stability class A were so large that
plumes tended to be well mixed with heights within a relatively short dis-
tance from stacks, which was not evident during the field experiment.
The much-scattered plumes of flight 3 over the vertical ranges implied
that the atmospheric condition was more unstable than those of previous
flights with class B. The steady-state vertical dispersion coefficients from
the Pasquill scheme were not adequate to simulate the instantaneous and
non-steady state plume dispersion observed on a short time scale over the
coastal regions between two stability classes. Park and Kim (2007) assessed
the effects of various factors, including sampling time and surface rough-
ness, on dispersion coefficients at another powerplant site in the same
coastal area. We calculated the dispersion coefficients according to their
proposed scheme and then estimated footprint values. There was great un-
certainty in determining dispersion coefficients under unstable conditions.
Later in the result section, we assessed the uncertainties ranges around the
best estimate by footprint method with two different stability cases.

3. Results
3.1. Airborne observations and stack parameters

The observed SO, concentrations, altitudes, and wind vectors in the
three flight cases, along with local flight times in Fig. 2. Flights started to
circle at ~914 m over the power plant, with a radius of ~2 km, and
descended to ~365 m. Airborne SO, measurements were performed
between 10:04 and 10:13, and 14:25 and 14:33 on October 21, 2019, and
between 14:22 and 14:45 on October 27, 2020, in KST. Each flight captured
a few strong plumes of =10 ppb (Fig. 2). Flight paths were designed to
track well-characterized SO, downwind plumes as close as possible to the
power plant emissions sources, with less mixing between stacks. Northeast-
erly winds persisted during the two flights on October 21, 2019, flowing
parallel to the stack line in the Taean power plant. Accordingly, plumes
from each stack likely overlapped and merged further as they progressed.
The relatively fewer peaks observed in the flights on October 21, 2019,
were characteristic of plume merging. At a distance of ~2 km from the
stacks, airborne measurements of SO, were conducted at three different
altitudes in 2019. Notably, the near-field flights with three heights may
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Fig. 2. Time series of SO, (black lines) and flight altitudes (red lines) over the three flight cases. Colored arrows indicate wind vectors with speeds.

have been too sparse to capture all plume structures from elevated stacks
for the mass balance model, especially under the windy conditions
observed in 2019; therefore, this number of altitudinal transects was
increased to seven in 2020, as a more accurate mass balance analysis is
possible at increasingly detailed vertical resolutions.

Typically, the near-field sampling scheme is suitable for tracking individ-
ual stack emissions using an inverse method if the proper links between
sources and receptors can be estimated via Gaussian plume theory; however,
additional parameters are required to calculate the concentration fields from
stacks (i.e., meteorology and stack parameters) via observation points.
Table 2 summarizes the physical and operational conditions of the seven
stacks across the ten power stations in the Taean power plant. Power stations
54 6,7 + 8,and 9 + 10 were paired and combined into Stacks 5, 6, and 7,
respectively. All stack heights were ~150 m, with diameters ranging from
5.4 to 7.7 m. Gas exit velocities and temperatures were measured onsite by
an automatic real-time stack monitoring system, where the exiting gas
temperatures from all stacks were ~50 °C higher than the ambient air. As rou-
tine operational shutdowns were performed for Stack 3 on October 21, 2019,
and Stack 4 on October 27, 2020, neither emission parameters nor rates were
observed for these two stacks over the specific dates.

3.2. Mass balance approach

Fig. 3 shows the SO, concentrations depicted along 3-D flight paths for
the three sampling cases. The number of altitude steps was increased to
seven in 2020 to enhance the sampling resolution; thus, revealing more
detailed plume structures with multiple SO, enhanced plume cores, further
supporting the more accurate determination of power plant SO, emissions.
SO, concentrations were generally low along the upwind sides over the
water where no primary emissions sources were located; however, broadly
elevated levels of SO, were distinct in the lowest altitudes along the north-
ern to eastern sides of flight tracks, especially for the 2019 flights. Such low
altitude upwind SO, emissions most likely originated from ground or sea
level sources (e.g., ships). Although these SO, influxes towards the sam-
pling columns were counted and subtracted in the mass balance model, it
was clear that elevated background concentrations increased the uncer-
tainty in the current SO, emissions via top-down methods. In contrast to
the 2019 flights, background SO, concentrations along the upwind side

Table 2
Stack parameters and operational conditions for each stack.

were low in 2020, allowing for the more accurate quantification of SO,
patterning.

Spatially interpreted SO, concentrations and the observed sampling
points are plotted in Fig. 4. The kriging method discussed in Section 2.4
was used to calculate SO, curtain plots, as plume heights and shapes were
much clear in these plots. Three well-defined plume cores were discerned
at elevations of 400 and 600 m on the morning of October 21, 2019
(Fig. 4a). However, by the afternoon, plume cores were only observed at
the lowest height, as increased wind speeds and air temperatures rendered
the plumes less buoyant and more horizontal, thereby forcing their disper-
sion at lower altitudes with relatively low effective heights (Table 2). It
should be noted that plume cores depicted in the curtain plots did not likely
represent the actual plume center due to biased interpolations from sparse
transects. Although the stack plumes were not well separated when the
wind directions were nearly parallel to the stack line, a few were discern-
able at the plume cores. On October 27, 2020, the plume heights increased
to 800 m, with substantially low wind speeds and ambient temperatures.
The effective heights varied significantly from 361 to 583 m on this date,
generally ~100 m higher than those recorded in the previous year's flights.
The significant differences in effective heights and unstable atmospheric
stability (Class A/B) were likely the causes of the dispersed plume heights
on the downwind side during the 2020 flight. Furthermore, horizontal
separations between the plumes were more apparent as the wind blew
perpendicular to the stack line on this date.

Using the mass balance equation with horizontal wind vectors and the air-
craft headings interpolated at all grid points where SO, concentrations were
measured, the net SO, fluxes were determined as 484 + 142, 547 + 155,
and 690 + 173 kg'hr ! for Flights 1, 2, and 3, respectively (Table 3). SO,
ERs for each stack were retrieved from CAPSS in the 2017 base year, the latest
official emissions inventory, revealing a rate of 993 + 288 kg'hr ! for this
facility. The uncertainty for SO, emission for the coal combustion power
plants in CAPSS inventory is about 29 % (Kim and Jang, 2014). Real-time
SO, emissions observed by the stack monitoring systems were 1969 =
394 kghr™!, 765 + 153 kghr™!, 630 + 126 kg'hr ! for Flights 1, 2, and
3, respectively. Notably, the mean of three emissions values, 1122 =+
423 kg'hr ™!, was similar to the CAPSS data, indicating the capacity of the
CAPSS emissions data to reasonably represent overall SO, emissions for this
power plant. Here, the emissions calculated by the mass balance method
were 28-75 % lower than the Cleansys SO, measurements during the first

Point source Stack height (m) Stack effective height (m) Stack diameter (m) Exit gas velocity (m's™ D) Exit gas temp (K)
#1 #2 #3 #1 #2 #3 #1 #2 #3

Stack 1 150.3 333.4 325.6 466.2 6.5 24.9 16.7 16.2 347.4 347.0 348.6
Stack 2 150.3 387.4 377.5 457.9 6.5 26.1 24.9 15.5 349.9 349.3 348.6
Stack 3 150.3 - - 482.4 6.5 - - 17.7 - - 348.2
Stack 4 150.3 361.9 353.2 - 6.5 19.2 19.6 - 353.0 353.0 -
Stack 5 150.0 325.9 319.8 361.2 5.4 22.8 22.7 15.3 346.5 346.5 332.6
Stack 6 150.0 348.6 327.1 448.5 5.4 20.7 20.4 18.3 358.5 358.5 362.1
Stack 7 150.0 528.6 478.1 583.8 7.7 30.1 30.2 17.9 355.9 355.9 356.1
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Fig. 4. SO, curtain plots on: (a) the morning of October 21, 2019; (b) afternoon of October 21, 2019; and (c) October 27, 2020. Concentrations between observation points
were interpolated by kriging, and the distances were calculated from the north end of flight tracks (white lines) in a clockwise direction along the x-axis.

two flights, whereas mass balance estimates were within 10 % of the real-
time values in 2020, although it underestimated CAPSS data by 30 %.

A few factors may be responsible for the observed underestimates by
mass balance during Flights 1 and 2. First, it is possible that the plume
cores were missed due to sub-optimally-positioned sampling transects. If
the aircraft did not fly across the centers of the plume cores, the kriging
interpolation would lead to a significant underestimation of the SO,
concentrations. Secondly, the fast advection at higher wind speeds and
more stable atmospheric conditions during Flights 1 and 2, respectively,
may have also weakened the vertical plume dispersions, thereby increasing
the chances of the plume passing between the widely separated transect

Table 3

heights in both 2019 flights, and increasing the possibility of underestima-
tion in the mass balance method. Lastly, an elevated SO, background on the
upwind side may have resulted in lower estimates. Ideally, the upwind
background concentrations do not affect the mass balance calculations, as
they eventually move out of the box at the downwind side; however, the
calculated influx of SO, on the upwind side was slightly more significant
than its downwind outflux during Flights 1 and 2. For Flight 3, densely
located sampling position heights and low background SO, concentrations
both up- and downwind presented ideal conditions for the successful appli-
cation of the mass balance method; consequently, the estimates derived
from this approach were well-matched with real-time emissions. The

Overall comparison of total emissions estimates implemented by the mass balance and inverse methods, with rea-time Cleansys stack emissions data and CAPSS emissions

inventory from 2017 for each case flight (unit: kg:hr ™).

Stacks Flight 1 Flight 2 Flight 3 CAPSS
Mass balance Foot print Clean Mass balance Foot print Clean Mass balance Foot print Clean (2017)
method method sys method method sys method method sys
Stack - 179 = 95 680 + 136 - 99 + 74 53 =11 - 49 + 43 53 =11 46 = 13
1

Stack - 237 =98 625 = 125 - 107 £ 73 34x7 - 53 * 44 56 = 11 82 * 24
2

Stack - 188 * 95 0 - 103 + 73 0 - 61 = 50 78 = 16 71 =21
3

Stack - 162 + 91 55+ 11 - 105 + 573 59 =12 - 63 = 52 0 85 = 25
4

Stack - 228 *+ 104 291 =58 - 233 = 101 272 * 54 - 158 * 81 166 + 33 270 =78
5

Stack - 118 += 81 57 =11 - 120 = 79 107 £ 21 - 84 + 64 95 + 19 132 = 38
6

Stack - 256 = 107 262 =52 - 244 = 100 241 £ 48 - 172 £ 85 184 £ 37 308 = 89
7

Total 484 + 142 1368 = 255 1969 + 394 547 *+ 155 1010 = 219 765 = 153 690 = 173 641 + 164 630 = 126 993 * 288
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wind speeds at stack heights are required to calculate the plume rises. As we
interpolated wind speeds at stack heights using wind speeds at the nearby
weather stations and about 400 m airborne measurements, some uncer-
tainty could be expected. The calculated effective stack heights during
flight 3 ranged from 361 m to 583 m above the ground (Table 2). However,
the observed plume centers depicted in Fig. 4 were found between 467 m
and 801 m in height, which indicated our plume rise values were
underestimated by about 30 %.

3.3. Gaussian footprint approach
SO, footprints were calculated for all downwind sampling positions
using a reverse Gaussian plume scheme. Fig. 5(a) shows an example foot-

print contour for a sampling position corresponding to the maximum SO,
concentrations observed during Flight 1 (altitude, 400 m), where the

(a)
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seven stack locations were also marked. An advantage of the footprint
method is that it can be used more efficiently to estimate the ERs over
each stack source, while the mass balance method can be applied to
spatially separated individual sources (Baray et al., 2018). Accordingly,
footprints were calculated at the effective height for each stack (Table 2),
and their frequency distributions at 0.001 sppbv-g ™! intervals are shown
in Fig. 5b. During Flight 1, each stack produced some footprint values
>0.1 s;ppbv-g ~!. These skewed data (outliers) were located on the far-
right side of footprint distribution samples. A few large footprint values
can dominate or distort the statistical emissions analyses. However, they
were not excluded here, as they depicted accurate instantaneous measure-
ments of more direct proximity sampling positions to stacks with less
dispersion.

Fig. 5¢ compares the calculated ERs (posterior in Table 3) with uncer-
tainties derived from the footprint approach with the Cleansys real-time
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measured ERs. The SO, ERs allocated by the CAPSS inventory for individ-
ual stacks are also presented and were used as prior ERs for the Bayesian lin-
ear regression here. Notably, the measured and accurate SO, ERs of Stacks
1 and 2 were significantly higher than the CAPSS inventory (a priori)
concentrations, as they were recently restarted from a routine shutdown.
Compared to a priori estimates, posterior estimates significantly increased
the ERs of Stacks 1 and 2; however, the reproduced values were approxi-
mately lower than half of the Cleansys measured levels, notably exceeding
the calculated uncertainty range. Such a severe overestimation was also
evident in Stack 3 and 4, whereas the Cleansys measured emissions well
aligned with the CAPSS inventory for Stack 4. Specifically, estimates here
failed to estimate zero emissions from Stack 3. Conversely, the emissions
calculations were well matched in Stacks 5 and 7. The statistically signifi-
cant differences between the calculated and true values were primarily

(a)
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attributed to inaccurate footprint calculations rather than the SO, measure-
ments. For example, the position tightness of the five stacks along the foot-
print isopleth shown in Fig. 5a visually depicts this potential source of error.
The differences between the calculated and Cleansys measured rates were
improved for Stacks 6 and 7, as both agreed within an uncertainty range
estimated by the Bayesian linear regression method. Notably, these stacks
were positioned closest to the airborne sampling locations with more
distinct footprint values.

Fig. 6 shows the footprint contour derived from the sampling position,
the frequency distribution for footprints, and the estimated ER for each
source stack (Fig. 6a, b, c, respectively) during Flight 2. Stacks produced
more isolated footprint values as the wind shifted north and the stack line
crossed the plume footprints. Further, as the wind speed was increased
compared to Flight 1 at the same atmospheric stability (class B), the
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Fig. 6. (a) Calculated Gaussian footprints (sppb-g ~!) at an airborne sampling position on the afternoon of October 21, 2019; (b) Frequency plots showing the footprint
distributions for each stack; (c) Comparison of calculated ERs using the Gaussian footprint with Cleansys real-time measured ERs and a priori CAPSS inventories.
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footprint isopleth narrowed, and the differences in footprints between
stacks increased; thus, the changing wind conditions played a significant
role in optimizing the footprint approach. Similarly, the footprint frequency
distributions of the stacks also indicated that Flight 2 maintained more
favorable conditions for the statistical approach, as the total number of foot-
print values for every stack was markedly increased, thereby yielding
improved statistical analyses compared to Flight 1. Furthermore, the foot-
print data for all stacks roughly followed a bell-shaped normal distribution,
without any noticeable outliers. Consequently, relatively robust estima-
tions of the ERs were expected in Flight 2.

During Flight 2, the overall ERs obtained using the footprint approach
agreed well with the real-time rates within the calculated uncertainties,
save that for Stack 3 during Flight 2 (Fig. 6¢), where it appeared that the sta-
tistical method employed could not accurately account for zero emissions
levels. The methods simulated reasonable ERs for Stack 5, 6, and 7 and

(a)

0.00 002 0.03 005 0.06 0.08 0.09
I

Footprints (s*ppbv-g?)
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overestimated emissions for the other four stacks, although the estimated
ERs for four stacks were within the uncertainty boundary of the estimates.
Alternatively, the calculated estimates for Stack 6 and 7 performed well
when compared with the measured values; however, it should be noted
that the a priori CAPSS inventory values better represented the stack mea-
sured ERs in other stacks. This implies that errors were significantly
inherited in the statistical footprint model, similar to Flight 1. Further, the
footprint model also produced strong fits for Stacks 6 and 7, the closest
upwind stacks to the airborne sampling positions.

Fig. 7 depicts the footprints and ERs during Flight 3. As the atmosphere
was unstable (class A/B) with low wind speeds, the derived footprint spread
most widely over the power plant. Here, the well-defined and slowly mov-
ing crosswinds perpendicular to the stack line created a distinct set of foot-
prints. Additionally, more footprints were accumulated for all stacks
resulting from the increased number of flight transects intercepting plumes
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during Flight 3. As a result of this increased sample size, the footprints for
each stack resembled more ideal distributions.

The calculated footprint distributions during Flight 3 were typically
bell-shaped with much fewer outliers than Flights 1 and 2; therefore, the
reliability of emissions estimates using this statistical method was greatly
enhanced by these normal distributions of calculated footprints. It was sim-
ilarly found that the estimation of SO, ERs via footprint analysis was greatly
improved by the CAPSS inventory during Flight 3. Excluding Stack 4, which
was inactive during Flight 3, the combined approach of Gaussian footprints
and Bayesian regressions successfully predicted the Cleansys real-time
measured ERs of each stack with high accuracy, maintaining a relative
difference between the calculated and real-time measured rates ranging
from 5 % to 22 %. Unlike the other flights, the model results of Flight 3
retained their accuracy even for distant stacks from the downwind
sampling points.

To assess the performance of the footprint method, we compared the
measured SO, concentrations with calculated ones in Fig. 8. Most of the
data over 10 ppbv of observed SO2 existed close to the 1:1 line with
estimated uncertainties. However, a group of data inside the blue square
box was also distinct at below 10 ppbv of SO,, which indicated that the
footprint model miscalculated the positions of plumes and overpredicted
SO, concentrations in such cases. These mismatched data were likely
made by the non-steady state characteristics of air dispersions, especially
in unstable conditions, while we assumed a steady state in this study.
Further improvement in the footprint method should be sought to reduce
this uncertainty, mainly to reflect the non-steady state behaviors of the
instantaneous plumes.

We tested how ERs for flight 3 in the footprint method were affected in
the cases of no prior ER information available (Table 4). As stated in the
method section, The reference run for flight 3 in Table 4 was calculated
with the modified sigma values between stability classes A and B. If the
initial prior ER values were set to zero (sensitivity run 1), The calculated
ERs decreased significantly by approximately 62 % of the reference run.
The relative differences for individual stacks between two runs ranged
from 8 % to 64 %. In the result Section 3.1, we found that the observed
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Fig. 8. Comparative plots of calculated concentrations using the Gaussian footprint
method and airborne observations during flight 3. The solid red line indicates a 1:1
agreement between observed and predicted concentrations. The square regions
represented data when the footprint model overpredicted SO, concentrations
exceeding the uncertainty ranges.
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plume rises were approximately 50 % higher than our calculated plume
values. We considered the ER variations according to the plume rise
changes. In cases of plume rise increased by 50 % (sensitivity run 2), total
ER got 8 % smaller than the reference run. The change in ERs by the
plume rise changes was not as significant as other parameter changes.
This was primarily due to the unstable atmospheric stability of flight 3
with the significant vertical dispersion coefficients. The uncertainty of
calculated ER by plume rise changes would be much more significant in
more stable atmospheric conditions. We have run the footprint model
with two different stability conditions (A and B) to illustrate the changes
in estimated ERs with varying stability. Total ER increased by 43 % and de-
creased by 51 % compared to the reference value, along with stability
changes to A and B, respectively. This sensitivity test suggested that the
availability of prior ERs and the uncertainties in dispersion coefficients in
the inverse modeling method resulted in a high degree of errors, especially
under very unstable conditions. Plume rise could play an additional impor-
tant role in the neutral and stable atmospheric conditions.

4. Discussion

Table 3 summarizes the overall comparison of the two top-down
approaches for estimating SO» ERs from the Taean power plant across the
three flight conditions. During the first flight, both the mass balance and
footprint methods underestimated SO, emissions compared to Cleansys
values, a statistically significant difference for the mass balance method.
The degree of underestimation error obtained via the mass balance method
was greatly improved to 30 % during the afternoon of Flight 2 on the same
day, whereas the Gaussian footprint method projected greatly overesti-
mates. For both Flights 1 and 2, the vertical sampling resolutions were
likely too sparse to capture the plume cores of each stack and reveal the
maximum SO, concentrations. As the plume was particularly narrow,
especially on this date, a higher vertical resolution with more altitudinal
transects was needed to ensure that the plume cores were intercepted;
thus, significant underestimates of SO, ERs were produced by the mass bal-
ance approach in 2019. Conversely, the Gaussian footprint method does not
require plume center concentrations, as it matches any measured concen-
tration from locations with existent source information. This is a notable
advantage when detailed spatial patterns of airborne samplings are unavail-
able. Although the overall Gaussian footprint method produced more accu-
rate estimates than mass balance, the individual ERs for each stack source
differed significantly from the Cleansys real-time measured rates, particu-
larly for the most distant stacks from the sampling positions (see Fig. 5 in
Section 3.3). Accordingly, the inadequate number of footprints appeared
to inhibit the accurate determination of stack-based ERs in the Gaussian
method. Further, it was assumed that the Taean power plant was the only
emissions source of the observed SO, concentrations; however, this was
likely inaccurate during Flights 1 and 2, where notable levels of SO, were
observed at the lowest level of the flight tracks on the upwind side. This
may have contributed to the underestimation of ERs in the mass balance
approach. Notably, the high background values on the upwind side did
not affect the results of the footprint method, although high downwind
background values may produce positively biased outcomes in either of
the two cases. Thus, it is reasonable to state that the optimal performance
of both methods requires either minimal background conditions or plume
concentrations that are substantially higher than any background values
observed if low-level fugitive emission sources exist in the vicinity of the
study area.

Both requirements mentioned above were satisfied during the more
detailed vertical resolution obtained and lower background SO, concentra-
tions observed during Flight 3. The calculated ERs for the mass balance and
Gaussian footprint methods were well matched with Cleansys real-time
measured data within differences <10 %. As these differences were well
below the estimated uncertainty, it was concluded that both methods
could accurately estimate Cleansys ERs under these particular conditions.
Moreover, large sets of footprints allowed for the accurate estimation of
individual ERs for each stack, a notably distinct advantage of the Gaussian
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Table 4
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Comparison of prior and plume rise sensitivity test using the inverse method for flight 3 (unit: kghr ~!). The reference run was calculated with a priori (CAPSS) and modified

dispersion coefficients for stability class A/B.

Stacks Reference run Sensitivity run 1 Sensitivity run 2 Sensitivity run 3 Sensitivity run 4
Stack 1 49 + 43 41 + 36 46 + 39 71 + 58 19 =17

Stack 2 53 + 44 43 + 39 49 + 42 82 + 62 18 =17

Stack 3 61 + 50 54 + 44 57 + 48 87 + 68 20 £ 17

Stack 4 63 * 52 58 + 47 63 * 50 98 + 69 21 £19

Stack 5 158 + 81 70 + 54 149 + 82 217 + 100 43 £ 35

Stack 6 84 + 64 70 + 54 78 * 60 119 = 76 47 + 38

Stack 7 172 = 85 62 + 50 151 *= 84 240 + 104 145 + 64

Total 641 * 164 398 + 124 593 + 160 915 + 208 314 + 89

Sensitivity run 1: case without known priors.
Sensitivity run 2: case of plume rise increased by 50 %.
Sensitivity run 3: case of stability A.

Sensitivity run 4: case of stability B.

method; however, the overall uncertainty in the ERs did not change signif-
icantly compared to Flight 2. It was assumed here that errors in footprint
calculations and SO, measurements were constant across the entire study
period, which may not be valid, particularly for footprint estimates. The
accurate determination of footprints is closely dependent on the stack's
effective heights and plume dispersion parameters. To this end, Mao et al.
(2022) similarly indicated that the robustness of ER performances signifi-
cantly decreased with an uncertain source height, whereas its accuracy
was substantially reduced under uncertain dispersion parameters, as we
confirmed in this study. Accordingly, the proper evaluation of footprints
mandates that the uncertainties in determining the stack's effective heights
and dispersion parameters are assessed extensively under different atmo-
spheric conditions, geographical settings, and various background condi-
tions affected by fugitive ground emissions relevant to the study area. A
further drawback of the footprint method is that a steady-state assumption
is required to calculate Gaussian plume dispersion. Here, flight times of
10-20 min over the Taean power plant were within the range of typical
timescales for Gaussian dispersion; however, aircraft sampling can inter-
cept only a part of an instantaneous fluctuating plume for any individual
transect at a time. Alternatively, although the mass balance method does
not require a steady-state plume assumption, the varying wind speeds and
directions at a sampling position during a flight can significantly reduce
the accuracy of the estimates (Zondlo, 2021). Overall, it was confirmed
here that enhanced vertical and horizontal resolutions or multiple passes
of airborne sampling points increased the accuracy of airborne top-down
emissions estimates using both the mass balance and footprint methods.
Furthermore, it was revealed that combining these two methods could
enhance the robustness and reliability of the top-down approaches, and
they can be used to verify compliance on SO, emissions regulations for
significant point sources.

5. Conclusion

Via three airborne experiments conducted over the Taean power plant,
South Korea, in October 2019 (Flights 1 and 2) and 2020 (Flight 3), SO, ERs
were determined using mass balance and Gaussian footprint methods.
Three altitudinal transects were conducted during Flights 1 and 2, whereas
seven transects were conducted during Flight 3. The SO, ERs measured
from the in-situ telemetry system were 1969, 765, and 631 kghr ! for
Flights 1, 2, and 3, respectively. Here, the power plant's official emissions
inventory (CAPSS) represented the Cleansys SO, ERs reasonably well,
except under unusual operating conditions. The mass balance method
projected ERs of 484 and 547 kghr ~* for the first two flights, which were
significantly lower than the Cleansys values, likely because of insufficient
sampling transects to intercept the stack plumes. Also, elevated background
SO, concentrations on the upwind side of the sampling flight column may
have also contributed to the underestimation. The mass balance ER
estimated during Flight 3 showed strong agreement with the Cleansys
measured values, with a difference of <10 %. The low background SO,
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concentrations and the increased sampling height resolution likely allowed
for the mass balance approach to more accurately estimate ERs for this date.

Overall, the Gaussian footprint analysis produced more reliable results
across all cases than those derived from the mass balance method, yielding
1368; 1010; and 641 kghr ~! SO, ERs for the three flights, respectively. It
was revealed that the Gaussian footprint method was less susceptible to
low vertical sampling resolutions and high background concentrations on
the upwind side observed during the first two flights. As the Gaussian foot-
print method heavily depends on reliable prior information of the source
ERs, CAPSS data were applied here for Bayesian inference. Accordingly,
this reliable a priori information appeared to produce more accurate
estimates of SO, ERs using Gaussian footprint methods, even under less
favorable conditions.

Mass balance has several distinct advantages over the Gaussian foot-
print method. Notably, it does not require prior information regarding the
source strength and location or steady-state assumptions for estimating
plume dispersion. Although it is simple and practical for use in various
source applications (e.g., area sources), it is more difficult to resolve indi-
vidual source strengths except for the spatially well-separated multiple
sources. Alternatively, the present study demonstrated that the Gaussian
footprint method successfully quantified ERs from separate point sources
(i.e., power plant stacks). Here, both methods were in close agreement
when satisfactory vertical resolutions were obtained and low background
concentrations were observed. Thus, both implemented airborne top-
down approaches were suitable for estimating the SO, ERs for significant
point sources when data with sufficient spatial resolutions were obtained.
Furthermore, the findings here indicate that the footprint approach and
the mass balance method can add a high degree of confidence when
determining the ERs from individual point sources and ensuring emissions
compliance.
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